
LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor J.W.S. Cassels, Department of Pure Mathematics
and Mathematical Statistics, 16 Mill Lane, Cambridge CB2 1SB, England

4 Algebraic topology, J.F.ADAMS
5 Commutative algebra, J.T.KNIGHT
8 Integration and harmonic analysis on compact groups, R.E.EDWARDS

11 New developments in topology, G.SEGAL (ed)
12 Symposium on complex analysis, J.CLUNIE & W.K.HAYMAN (eds)
13 Combinatorics, T.P.McDONOUGH & V.C.MAVRON (eds)
15 An introduction to topological groups, P.J.HIGGINS
16 Topics in finite groups, T.M.GAGEN
17 Differential germs and catastrophes, Th.BROCKER & L.LANDER
18 A geometric approach to homology theory, S.BUONCRISTIANO, C.P.ROURKE

& B.J.SANDERSON
20 Sheaf theory, B.R.TENNISON
21 Automatic continuity of linear operators, A.M.SINCLAIR
23 Parallelisms of complete designs, P.J.CAMERON
24 The topology of Stiefel manifolds, I.M.JAMES
25 Lie groups and compact groups, J.F.PRICE
26 Transformation groups, C.KOSNIOWSKI (ed)
27 Skew field constructions, P.M.COHN
29 Pontryagin duality and the structure of LCA groups, S.A.MORRIS
30 Interaction models, N.L.BIGGS
31 Continuous crossed products and type III von Neumann algebras,A.VAN DAELE
32 Uniform algebras and Jensen measures, T.W.GAMELIN
34 Representation theory of Lie groups, M.F. ATIYAH et al.
35 Trace ideals and their applications, B.SIMON
36 Homological group theory, C.T.C.WALL (ed)
37 Partially ordered rings and semi-algebraic geometry, G.W.BRUMFIEL
38 Surveys in combinatorics, B.BOLLOBAS (ed)
39 Affine sets and affine groups, D.G.NORTHCOTT
40 Introduction to Hp spaces, P.J.KOOSIS
41 Theory and applications of Hopf bifurcation, B.D.HASSARD,

N.D.KAZARINOFF & Y-H.WAN
42 Topics in the theory of group presentations, D.L.JOHNSON
43 Graphs, codes and designs, P.J.CAMERON & J.H.VAN LINT
44 Z/2-homotopy theory, M.C.CRABB
45 Recursion theory: its generalisations and applications, F.R.DRAKE

& S.S.WAINER (eds)
46 p-adic analysis: a short course on recent work, N.KOBLITZ
47 Coding the Universe, A.BELLER, R.JENSEN & P.WELCH
48 Low-dimensional topology, R.BROWN & T.L.THICKSTUN (eds)
49 Finite geometries and designs,P.CAMERON, J.W.P.HIRSCHFELD & D.R.HUGHES (eds)
50 Commutator calculus and groups of homotopy classes, H.J.BAUES
51 Synthetic differential geometry, A.KOCK
52 Combinatorics, H.N.V.TEMPERLEY (ed)
53 Singularity theory, V.I.ARNOLD
54 Markov process and related problems of analysis, E.B.DYNKIN
55 Ordered permutation groups, A.M.W.GLASS
56 Journees arithmetiques, J.V.ARMITAGE (ed)
57 Techniques of geometric topology, R.A.FENN
58 Singularities of smooth functions and maps, J.A.MARTINET
59 Applicable differential geometry, M.CRAMPIN & F.A.E.PIRANI
60 Integrable systems, S.P.NOVIKOV et al
61 The core model, A.DODD



62 Economics for mathematicians, J.W.S.CASSELS
63 Continuous semigroups in Banach algebras, A.M.SINCLAIR
64 Basic concepts of enriched category theory, G.M.KELLY
65 Several complex variables and complex manifolds I, M.J.FIELD
66 Several complex variables and complex manifolds II, M.J.FIELD
67 Classification problems in ergodic theory, W.PARRY & S.TUNCEL
68 Complex algebraic surfaces, A.BEAUVILLE
69 Representation theory, I.M.GELFAND et al.
70 Stochastic differential equations on manifolds, K.D.ELWORTHY
71 Groups - St Andrews 1981, C.M.CAMPBELL & E.F.ROBERTSON (eds)
72 Commutative algebra: Durham 1981, R.Y.SHARP (ed)
73 Riemann surfaces: a view towards several complex variables,A.T.HUCKLEBERRY
74 Symmetric designs: an algebraic approach, E.S.LANDER
75 New geometric splittings of classical knots, L.SIEBENMANN & F.BONAHON
76 Linear differential operators, H.O.CORDES
77 Isolated singular points on complete intersections, E.J.N.LOOIJENGA
78 A primer on Riemann surfaces, A.F.BEARDON
79 Probability, statistics and analysis, J.F.C.KINGMAN & G.E.H.REUTER (eds)
80 Introduction to the representation theory of compact and locally

compact groups, A.ROBERT
81 Skew fields, P.K.DRAXL
82 Surveys in combinatorics, E.K.LLOYD (ed)
83 Homogeneous structures on Riemannian manifolds, F.TRICERRI & L.VANHECKE
84 Finite group algebras and their modules, P.LANDROCK
85 Solitons, P.G.DRAZIN
86 Topological topics, I.M.JAMES (ed)
87 Surveys in set theory, A.R.D.MATHIAS (ed)
88 FPF ring theory, C.FAITH & S.PAGE
89 An F-space sampler, N.J.KALTON, N.T.PECK & J.W.ROBERTS
90 Polytopes and symmetry, S.A.ROBERTSON
91 Classgroups of group rings, M.J.TAYLOR
92 Representation of rings over skew fields, A.H.SCHOFIELD
93 Aspects of topology, I.M.JAMES & E.H.KRONHEIMER (eds)
94 Representations of general linear groups, G.D.JAMES
95 Low-dimensional topology 1982, R.A.FENN (ed)
96 Diophantine equations over function fields, R.C.MASON
97 Varieties of constructive mathematics, D.S.BRIDGES & F.RICHMAN
98 Localization in Noetherian rings, A.V.JATEGAONKAR
99 Methods of differential geometry in algebraic topology,

M.KAROUBI & C.LERUSTE
100 Stopping time techniques for analysts and probabilists, L.EGGHE
101 Groups and geometry, ROGER C.LYNDON
102 Topology of the automorphism group of a free group, S.M.GERSTEN
103 Surveys in combinatorics 1985, I.ANDERSEN (ed)
104 Elliptical structures on 3-manifolds, C.B.THOMAS
105 A local spectral theory or closed operators, I.ERDELYI & WANG SHENGWANG
106 Syzygies, E.G.EVANS & P.GRIFFITH
107 Compactification of Siegel moduli schemes, C-L.CHAI
108 Some topics in graph theory, H.P.YAP
109 Diophantine analysis, J.LOXTON & A.VAN DER POORTEN (eds)



London Mathematical Society Lecture Note Series. 108

Some Topics in Graph Theory

H.P. YAP

National University of Singapore

Tbr r,ghi o/ :Fa
L'nirerln

le p.im and Dell
nl! munnrr n

cs

gram,d b,

, b3

g/e_ v/fl in I53e

TFe Cverr Fad d: so/
rnmand pu blitFe

score 138,

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York New Rochelle

Melbourne Sydney



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521339445

© Cambridge University Press 1986

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1986
Reprinted 1987
Re-issued in this digitally printed version 2008

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Yap, H.P. (Hian Poh), 1938-
Some topics in graph theory. (London Mathematical Society
lecture note series; 108)
Includes bibliographies and index.
1. Graph theory.
1. Title. II. Series.
QA166.Y37 1986 511'.5 86-9548

ISBN 978-0-521-33944-5 paperback



Introduction

A complete, optional course on Graph Theory was first offered to

Fourth Year Honours students of the Department of Mathematics, National

University of Singapore in the academic year 1982/83. To those students

taking this course, it was their first introduction to Graph Theory and

so the standard of the course could not be set too high. However, since

it was a fourth year Honours Course, the standard could not be too

low. For this reason, I decided to use some existing textbooks for the

basic results in the first term and to concentrate on only a few special

topics in the second term in order to expose the students to some very

recent results. This book eventually grew out from the lectures I gave

to the students during the academic years 1982/83 and 1983/84.

More than seventy per cent of the materials in this book are taken

directly from recent research papers. Each chapter (except chapter 1)

gives an up-to-date account of a particular topic in Graph Theory which

is very active in current research. In addition, detail of proofs of

all the theorems are given and numerous exercises and open problems are

included. Thus this book is not only suitable for use as a supplement

to a course text at advanced undergraduate or postgraduate level, but

will also, I hope, be of some help to researchers in Graph Theory. In

fact, Mr. Chen Jing-Hui had written to inform me that by using my

lecture notes in his fourth year Graph Theory course in Xiamen

University, his students were able to do some research straightway.

A preliminary draft of the manuscript consisting of most of the

sections of Chapters 2, 3 and 5 was first submitted to Professor E. B.

Davies for consideration to be published as a volume in the London

Mathematical Society Student Texts Series in June 1983. This draft was

refereed and subsequently transferred to Professor J. W. S. Cassels for

consideration to be published as a volume in the London Mathematical

Society Lecture Note Series. I am very grateful to the referees for

their valuable comments and constructive criticisms, especially for

providing a shorter proof of Turner's results on vertex-transitive



graphs of prime order. I am also very grateful to Professors J. W. S.

Cassels and E. B. Davies for their encouragement. Thanks are also due

to Professor J. W. S. Cassels for assisting me in my application to the

National University of Singapore for a 5-month (November 19, 1984 to

April 18, 1985) sabbatical leave and to the National University of

Singapore for approving my application so that I can concentrate working

on this project.

While I was writing this book, I had opportunities to give several

survey talks on some topics covered in the book to various institutions

in England and China. In November 1982, 1 visited Oxford University,

University of Birmingham and the Open University for two weeks under the

sponsorship of the British Council. In May 1984, while on a sightseeing

tour of China, I visited East China Normal University (Shanghai),

University of Science and Technology (Hefei) and Academia Sinica

(Beijing). I also visited University of Cambridge, University of

Reading, Oxford University and the Royal Holloway College in January/

February, 1985 while I was on sabbatical leave. It is now a great

pleasure for me to acknowledge the helpful comments and suggestions from

many friends including N. L. Biggs, B. Bollobas, P. J. Cameron, Dong

Chun-Fei, A. D. Gardiner, A. J. W. Hilton, E. C. Milner, Wang Jian-Fang,

D. J. A. Welsh and R. J. Wilson. I am also indebted to Professor R. M.

Weiss for providing a sketch of his nice proof of Tutte's theorem on s-

transitive cubic graphs and to my colleague K. M. Koh for helping me in

the proofreading. Miss D. Shanthi's excellent word-processing should

also be recorded here.

Finally, a few words on the reference system and the exercises of

this book. When Theorem i.j is referred to, unless otherwise specified,

it is meant that we are referring to Theorem i.j of the same chapter.

When an exercise is marked with a minus or a plots sign, it means that

the exercise is easy or hard,':ime-consuming respectively; and if it is

marked with a star, it means that it is an open problem or a conjecture.
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1. BASIC TERMINOLOGY

1. Basic graph-theoretic terms

In this section we shall define some basic graph-theoretic terms

that will be used in this book. Other graph-theoretic terms which are

not included in this section will be defined when they are needed.

Unless stated otherwise, all graphs are finite, undirected, simple

and loopless. A directed graph is called a digraph and a directed edge

is called an arc. A multi raph permits more than one edge joining two

of its vertices. The number of edges joining two vertices u and v is

called the multiplicity of uv and is denoted by u(u,v).

The cardinality of a set S is denoted by ISI. Let G - (V,E) be a

graph where V = V(G) is its vertex set and E = E(G) is its edge set.

The order (resp. size) of G is IVI (reap. IEI) and is denoted by IGI

(resp. e(G)). Two vertices u and v of G are said to be adjacent if uv e

E. If e = uv a E, then we say that u and v are the end-vertices of e

and that the edge e is incident with u and v. Two edges e and f of G

are said to be adjacent if they have one common end-vertex. If uv c E,

then we say that v is a neighbour of u. The set of all neighbours of u

is called the neighbourhood of u and is denoted by NG(u) or simply by

N(u) if there is no danger of confusion. The valency (or degree) of a

vertex u is IN(u)I and is denoted by d(u). The maximum (resp. minimum)

of the valencies of the vertices of G is called the maximum (reap.

mininum) valency of G and is denoted by A(G) (resp. 6(G)).

A graph H is said to be a subgraph of a graph G if V(H) E_ V(G) and

E(H) c E(G). A subgraph H of G such that whenever u, v e V(H) are

adjacent in G then they are also adjacent in H is called an induced

subgraph of G. An induced subgraph of G having vertex set (or a

subgraph of G induced by) {vl, ..., vk) is denoted by <vl, ..., vk>.

The subgraph induced by V(G) - {vl, ..., vk) is denoted by G - {vl,

....vk} or by G - vl - ... - vk.



A vertex of valency 0 is called an isolated vertex. If all the

vertices of G have the same valency, d say, then we say that G is

regular of degree d and we write deg G = d. A regular graph of degree 3

is called a cubic graph. If G is a regular graph of order n such that

deg G = 0 (resp. n - 1), then G is called a null graph (resp. complete

graph) and is denoted by On (resp. Kn). If the vertex set of G can be

partitioned into two sets V1 and V2 such that every edge of G joins one

vertex in V1 to one vertex in V21 then G is called a bipartite graph. A

bipartite graph having bipartition V1 and V2 is said to be complete if

each vertex in V1 is adjacent to every vertex in V2. The complete

bipartite graph having bipartition V1 and V2 such that Ivii = r and

IV21 = s is denoted by Kr,s. A complete bipartite graph Kl,r is called

a star and is denoted by Sr+l The Petersen graph G(5,2) is a cubic

graph having vertex set V = {u0, ..., u4, v0, ..., v4} and edge set

E = {(ui, ui+1)' (ui, vi), (vi, vi+2) I

i = 0, ..., 4} where all the

subscripts are taken modulo 5. The generalized Petersen graph G(n,k)

(n > 5, 0 < k < n) is the cubic graph having vertex set {u0, ' un-1'
v0, ..., vn-1} and edge set {(ui, ui+1)' (ui, vi), (vi' vi+k)

I

i = 0,

..., n - 1} where all the subscripts are taken modulo n. The graphs

whose vertices and edges are the vertices and edges of the five regular

solids are called the platonic graphs.

An independent set of edges, or matching, in G is a set of edges no

two of which are adjacent. A matching in G that includes every vertex

of G is called a 1-factor in G.

A sequence of distinct edges of the form v0 vl, vl v2, ' yr-1 yr
is called a path of length r from v0 to Vr. If the vertices v0, v1,

..., yr are all distinct, then the path is called a chain (or open

chain), whereas if the vertices are all distinct except that yr = v0,

then the path is a cycle (or circuit). The length of a shortest open

chain from a vertex u to a vertex v # u is called the distance between u

and v and is denoted by a(u,v). The maximum distance between two

vertices of G is called the diameter of G and is denoted by d(G). The

length of a shortest cycle in G is called the girth of G and is denoted

by y(G). The length of a longest cycle in G is called the circumference

of G. A cycle of length n is denoted by Cn and a shortest path (open

chain) of length n is denoted by Pn. If G has an open chain P that

2



includes every vertex of G, then P is called a Hamilton path (or H-path)

of G. A cycle that includes all the vertices of G is called a Hamilton

cycle of C. If G has a Hamilton cycle, then G is said to be

Hamiltonian.

Two graphs G and H are said to be disjoint if they have no vertex

in common. Suppose G and H are two disjoint graphs. Then the

(disjoint) union G U H of G and H is the graph having vertex set

V(G) U V(H) and edge set E(G) U E(H) and the join G + H of G and H is

the graph having vertex set V(G) U V(H) and edge set E(G) U E(H) U {uv

u e V(G), v e V(H)}. A graph H is said to be obtained from a graph G by

inserting a vertex w(¢ V(G)) into an edge uv of G if V(H) = V(G) U {w}

and E(H) = (E(G) - {uv}) U {uw, wv}. Two graphs H1 and H2 are said to

be homeomorphic if both of them can be obtained from the same graph G by

inserting vertices into the edges of G. The complement G of a graph G

is the graph having vertex set V(G) such that two vertices in G are

adjacent if and only if they are not adjacent in G. The line graph L(G)

of a graph G is the graph having vertex set E(G) such that two vertices

in L(G) are adjacent if and only if their corresponding edges in G are

adjacent.

A connected graph is a graph such that any two vertices are

connected by a path. A graph G which is not connected is the (disjoint)

union of some connected subgraphs which are called the components of G.

A component of a graph is odd if it has an odd number of vertices. The

number of odd-components of G is denoted by o(G). A vertex v of G is a

cut-vertex if G - v has more components than that of G. Analogous to

the cut-vertex is the concept of a bridge. A bridge of a graph G is an

edge e such that the graph G - e obtained from C by deleting the edge e

has more components than that of G.

A (proper) vertex-colouring of G is a map n : V(G) + {1,2,...} such

that no two adjacent vertices have the same image. The chromatic number

X(G) of G is the minimum cardinality of all possible images of vertex-

colourings of G.

The following two theorems will be applied :

Dirac's theorem If G is a graph of order n > 3 such that 6(G) > n/2,

then G is Hamiltonian.

3



Tutte's theorem A graph G has a 1-factor if and only if

o(G - S) < ISI for all S -_ V(G).

2. Groups acting on sets

In this section we shall define some basic graph-theorectic terms

and state some theorems on group theory that will be used in this book.

Suppose X is a nonempty set with (or without) a structure. Then

the set of all structure-preserving permutations of the elements of X

forms a group under composition of maps. For instance, if G is a graph

and X is the vertex set of G, then the set of all permutations of X

preserving the adjacency of vertices forms a group, called the

automophism group of G.

Historically, the theory of groups dealt at first with such

permutation groups and later dealt with only abstract groups. However,

it has been found that the notion of group actions (or groups acting) on

sets, which passes an abstract group to a concrete permutation group,

provides good counting techniques. As a result, the notion of group

actions on sets plays an important role in the theory of finite groups.

We say that a group (an abstract group) G acts on a nonempty set X

if to each g in G and each x in X there corresponds a unique element

g(x) in X such that for every x e X and for every g, h e G, gh(x) _

g(h(x)) and 1(x) = x, where 1 is the identity element in G.

Now suppose G acts on a set X A 41. Then to each g in G, there

corresponds a permutation g in EX, the set of all permutations of X,

given by g : x + g(x). It is clear that f : G + EX given by 41 : g + fg

is a (group) homomorphism. We call 41 the permutation representation of

G corresponding to the group action.

Conversely, suppose f : G + EX is a homomorphism. Then G acts on X

when we define g(x) _ f(g)(x) for each g c G and each x e X. Thus a

group action of G on X can be defined alternatively as a homomorphism

from G to Ex.

From the second definition, we can see that the notion of a group

acting on a set X # 41 is more general than that of a permutation group

4



on X, because in the former case unequal group elements can give rise to

equal permutations, i.e. the map $ : g + mg need not be one-to-one. If

the map $ : g + $g is one-to-one, then G is said to act faithfully on X.

Suppose G acts on a set X # $. It is not difficult to show that if

we define a relation - on X by setting xl - x2 if there exists g in G

such that g(xl) = x2, then - is an equivalence relation on X. Hence,

for each x in X, we can define the G-orbit of x, denoted by Orb(x), to

be the set {g(x) I g e G} and the stabilizer Gx (or Stab(x)) of x in G

to be the set {g e G I g(x) = x}. It is not difficult to show that Gx

is a subgroup of G and that IOrb(x)I = [G : Gx] where [G : Gx] is the

index of Gx in G. Thus if G is finite, then IOrb(x)I = IGI/IGxI.

Let G act on a set X # $. The action is said to be transitive if

it has just one orbit; otherwise it is intransitive. An action of G on

X is doubly transitive if for any two ordered pairs (xl,x2), (yl,y2) of

distinct elements of X, there is some g in G such that g(xi) = yi,

i = 1, 2. An action of G on X is said to be regular if it is transitive

and Gx = {1} for each x in X. Hence a regular action is faithful. The

following theorem will be used in the study of vertex-transitive graphs

in Chapter 3.

Theorem 2.1 If a finite group G acts transitively on X, then for any

x e X, IXI = IGI/IGxJ.

If G acts on X and x, y e X are such that g(x) = y, then it is not

difficult to show that Gx = g-1Gxg. This fact can be used to prove the

following theorem.

Theorem 2.2 (Burnside's counting theorem) If a finite group G acts on

X # $, then the number of orbits of G is

1 IgeG 'V(g)
IGI

where $(g) = I{x e X I g(x) = x}I.

We can define an action of G on itself by conjugation : for each g,

x e G, we write xg = g-1 xg. Then Orb(x) - {g-lxg I g e G) is the

conjugacy class of x in G and Stab(x) - {g e G I g 1 xg - x) _ {g e G

5



xg = gx} = CG(x) is the centralizer of x in G. Hence, if G is a finite

group having k distinct conjugacy classes, then from the fact that

IOrb(x)I = [G : Gx], we have the class equation of G :

IGI =
j1=1 IOrb(xi)I ii=1

[G : CG(xi)] (1)

where xl, ..., xk are the representatives of the k conjugacy classes.

Let Z(G) be the set of elements x in G such that CG(x) = G. Then

Z(G) is the centre of G, and from (1) we have

IGI = IZ(G)I + [G : CG(yi)] (2)

where yi runs through a set of representatives of the conjugacy classes

which contain more than one element.

Suppose G is a finite group of order pkm where p is a prime and p4m

(p does not divide m). Then a subgroup H of G such that IHI = pk is

called a Sylow p-subgroup of G.

Using (2), H. Wielandt produced a very short proof of the following

theorem which we shall apply in Chapter 3.

Theorem 2.3 (Sylow's theorem) Suppose G is a finite group of order pkm

where p is a prime and p4m. Then

(i) G contains a subgroup of order pi for every i < k.

(ii) Any two Sylow subgroups of G are conjugate in G, i.e. if H1 and

H2 are Sylow p-subgroups, then there exists g e G such that

H2 = g-1 HI g.

(iii) The number of Sylow p-subgroups of G is a divisor of m and is

congruent to 1 modulo p.

(iv) Any subgroup of order pi, i < k, is contained in a Sylow

p-subgroup.

(For a 2-page proof of this theorem, see N. Jacobson: Basic

Algebra 1, pp. 78-79.)

Suppose G acts transitively on X. For each subset Y of X and each
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g in G, let g(Y) = {g(y)
I

y e Y}. A subset Y of X is said to be a

block for the action if for each g in G, either g(Y) = Y or

g(Y) n Y = 4>. it is clear that 4>, X and all the 1-element subsets of X

are blocks for the action. These blocks are called the trivial

blocks. The action is said to be primitive if the only blocks are the

trivial blocks; otherwise the action is imprimitive.

For results concerning primitive group actions, the readers can

refer to N. L. Biggs and A. T. White : Permutation Groups and

Combinatorial Structures, London Mathematical Society Lecture Note

Series 33, 1979; or J. S. Rose : A Course on Group Theory, Cambridge

University Press, 1978.

We shall apply Polya's Pattern Counting Theorem in Chapter 3.

Before we state Polya's theorem, we first define some terms.

Let D and R be nonempty sets. Let 4> be a map with domain D and

range R and let G be a permutation group on D. We define a binary

relation - on the set RD of all maps from D to R as follows 02 if

there exists g e G such that

1(d) = 4>2(g(d)) for every d e D (3)

It can be shown that this binary relation - is an equivalence relation

on RD. The equivalence classes determined by - are called the

patterns. The patterns correspond to the distinct ways of distributing

IRI objects into IDI cells when equivalence between ways of distribution

is introduced by the group acting on D.

To each element r in R (called the store), we assign a weight w(r)

which is an element in a commutative ring. The inventory of R is

defined to be w(r). Now for each 4> e RD, we define the weight W(4>)

of 4> to be ndcD w(4>(d)), and for each S RD we define the inventory of

S to be E$e5 W(4>). From the definitions, it follows that if *1 - 4>2,

then W(4>1) = W(4>2). Hence we can define the weight of a pattern P to be

the weight W(4') where 4> e P.

Next, since each permutation 4>(e G) on D = {1,2,...,n} can be

expressed uniquely as a product of disjoint cycles, for each k = 1, 2,

..., n, we let jk(4>) to be the number of cycles of length k in the

7



disjoint decomposition of 4'. The cycle index of G is defined by

I
jl(4') j2(') jn(*)

Z(G ; xl, ..., xn)

IGI

iEG xl x2 ...

Using Burnside's counting theorem, we can prove

Theorem 2.4 (Polya's Theorem on Pattern Counting) Let D and R .be

nonempty sets and let G be a permutation group on D. Suppose the

weights w(r) of an element r in R and W(P) of a pattern P are given as

above. Then the inventory of the patterns of RD is

Z(G ; IreRw(r), YrcR [w(r)]2, ...)

where Z(G ; xl, x2, ...) is the cycle index of G.

Corollary 2.5 If all the weights are chosen to be equal to unity, then

the number of patterns of RD is Z(G; IRI, IRI, ..., IRI).

A proof of Polya's Pattern Counting Theorem can be found in many

textbooks on combinatorics, for instance, in B. Bollobas : Graph Theory-

An Introductory Course, Graduate Text in Mathematics 63, Springer-

Verlag, 1979; and in C. L. Liu : Introduction to Combinatorial

Mathematics, McGraw-Hill, 1968.
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2. EDGE-COLOURINGS OF GRAPHS

1. Introduction and definitions

The notion of an edge-colouring of a graph can be traced back to

1880 when Tait tried to prove the Four Colour Conjecture. (A detailed

account of this can be found in many existing text books on Graph Theory

and therefore we shall not repeat it here.) However, there was not much

development during the period 1881-1963. A breakthrough came in 1964

when Vizing proved that every graph G having maximum valency A can be

properly edge-coloured with at most A + 1 colours ("proper" means that

no two adjacent edges of G receive the same colour). This result

generalizes an earlier statement of Johnson [63] that the edges of every

cubic graph can be properly coloured with four colours.

Many of the results of this chapter will be concerned with the so-

called 'critical graphs' introduced by Vizing in the study of

classifying which graphs G are such that x'(G) _ A(G) + 1. The main

reference of this chapter is Fiorini and Wilson [77].

We now give a few definitions. Let G be a graph or multigraph. A

(proper, edge-) colouring it of G is a map it : E(G) + {1,2,...} such that

no two adjacent edges of G have the same image. The chromatic index

X'(G) of G is the minimum cardinality of all possible images of

colourings of G. Hence, if A = 0(G), then it is clear that X'(G) > A

and Vizing's theorem says that A < X'(G) < A + 1. If X'(G) _ A, G is

said to be of class 1, otherwise G is said to be of class 2. If 7r is a

colouring of G such that the image set has cardinality k, then it is

called a k-colouring of G. If XI(G) < k, then G is said to be

k-colourable. Suppose it is a k-colouring of G having image set

{1,2,...,k}. Let Cn(v) or simply C(v) be the set of colours used to

colour the edges incident with v and let Cn(v) or simply C'(v) be the set

{1,2,...,k} - Cn(v). If i e C(v) we say that colour i is present at

v. If j e C'(v), we say that colour j is absent at v.

If it is a k-colouring of G, then it decomposes E(G) into a disjoint



union of colour classes E1,...,Ek in such a way that for each e e Ei,

n(e) = i. Hence, for i 0 j, each connected component of Ei U Ej is

either a cycle or a chain (open chain). If j e C(v) and i E C(v), then

the connected component of Ei U Ej containing v is said to be a

(j,i)n-chain having origin v. From the definition, each Ei is a

matching in G and thus certain results on the theory of matchings can be

applied to the study of edge-colourings.

We now give a brief summary of the main results of this chapter.

In §1, we prove Konig's theorem which says that if G is a bipartite

graph or multigraph, then X'(G) - 0(G). We also prove that X'(Kn) - n

if n is odd and X'(Kn) = n - 1 if n is even. These two basic results

are used to determine X'(0r) for the complete t-partite graph Or in §2,

which in turn is used to construct a class of chromatic index critical

graphs in §4.

In §2, we give a generalization of Vizing's theorem due to Andersen

and Gol'dberg (Theorem 2.2). From Theorem 2.2, we deduce Vizing's

theorem and some results of Ore and Shannon. We also prove several

sufficient conditions for a graph G to be of class 2.

In §3, we introduce the notion of (chromatic index) critical graphs

which is the main tool for classifying which graphs are of class 2. We

then give several properties of critical graphs. The main result of

this section is Vizing's Adjacency Lemma, which is abbreviated as VAL.

The results of this section are used very often in the subsequent

sections of this chapter.

In §4, we produce several methods for constructing critical

graphs. The most important method is the so-called HJ-construction due

to Hajos and Jakobsen. We also produce several counter-examples to the

Critical Graph Conjecture (which claims that every critical graph is of

odd order).

In §5, we give some lower and upper bounds on the size of critical

graphs. The main tool is Fiorini's inequality (Theorem 5.3). Applying

Fiorini's inequality, Vizing's conjecture on the lower bound for the

size of critical graphs G is verified for A(G) t 4 and is shown to be

"nearly true" for t(G) - 5 and A(G) - 6.
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In §6, we first prove several general results on the minimum

valency of a critical graph and then use them to construct all critical

graphs of order at most 7. These results are applied in the study of

1-factorizations of regular graphs in §8.

In §7, we apply Fiorini's inequality and VAL to prove that every

planar graph whose maximum valency is at least eight is necessarily of

class 1. We also suggest an approach to prove the Planar Graph

Conjecture (due to Vizing) which says that if G is a planar graph whose

maximum valency is at least six, then G is of class 1.

In §8, we prove that if a regular graph C of order 2n has degree

deg G = 2n - 3 or 2n - 4 such that deg G > 2[n21] - 1, then G is of

class 1, i.e. G is 1-factorizable. Further results towards the

resolution of the 1-Factorization Conjecture which says that if a

regular graph G of order 2r has degree deg G > 2[nil] - 1, then G is

1-factorizable, are given in the exercises of this section.

In §9 and §10, we give some nontrivial applications of the theory

of edge-colourings to vertex-colourings and to the reconstruction of

latin squares.

In §11, we briefly mention some other interesting and important

results on edge-colourings of graphs which we have not been able to

discuss in detail due to lack of space.

The following theorem was proved by Konig in 1916 in connection

with the factorization of graphs.

Theorem 1.1 (Konig [16]) If C is a bipartite graph or multigraph

having maximum valency A, then )('(G) _ A.

Proof. We prove this theorem by induction on the size of G.

Let e = vw c E(G). By the induction hypothesis, G - e has a

A-colouring n. Suppose C'(v) n C'(w) # . Let i c C'(v) n C'(w). Then

we can extend n to a A-colouring of G by assigning colour i to the edge

e. Hence we assume that C'(v) n C'(w) = .

Let i c C'(v) and let j c C'(w). Then j c C(v) and i e C(w) and

the (j,i)n chain C having origin v cannot have w as its terminus,

11



otherwise C U {e} forms an odd cycle in G, contradicting the fact that G

is bipartite. Now, after interchanging the colours j and i in C, and

assigning colour j to the edge e, we obtain a ti-colouring of G.

The chromatic index of Kn has been determined by several people

using a variety of methods (see, for instance, Vizing [65a] and Behzad,

Chartrand and Cooper [671). The following proof is constructive and can

be found in Berge [73] and Fiorini and Wilson [77].

Theorem 1.2 For n > 2,

J
n if n is odd

n - 1 if n is even

Proof. We note that X'(Kn) > A(Kn) = n - 1. Hence, for odd n, if we

can show that X'(n) # n - 1 and establish an n-colouring of Kn, then

X'( n) = n; and for even n, to prove that X'(Kn) = n - 1, we need only

to establish an (n-1)-colouring of Kn.

First, suppose n is odd. If it is a colouring of G, then each

colour class of it has cardinality at most (n - 1). Hence

e(G) t n - 1)X'(Kn), from which it follows that X'( n) > n. We now

establish an n-colouring of Kn. We draw Kn as a regular n-gon and let

V(Kn) _ {vl,v2,...,vn}. Then the edges v1vn, v2vn-1' v3vn-2, ... are

parallel. The edges v2v1. v3vn' v4vn-1' ... are also parallel and so

on. We colour the first set of 2(n - 1) parallel edges by colour 1 and

colour the second set of ..(n - 1) parallel edges by colour 2 and so on.

This provides an n-colouring of Kn. Fig.2.1 illustrates partially the

vl

/a\
v 7 p\---r-- -, V 2

v
6 . i v3

v
4

Figure 2.1 Figure 2.2
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Next, suppose n is even. It is clear that X'(K2) = 1. Hence, we

assume that n > 4. Let v e V(K0) and colour the graph Kn - v in the

manner described above. We observe that there is exactly one colour

absent at each vertex in the above colouring of Kn - v and that the

colours absent at any two vertices of Kn - v are pairwise distinct.

Hence if colour i is absent at vertex u in K. - v, then we colour the

edge uv by colour i. This provides an (n-1)-colouring of K.

Exercise 2.1

1-. Prove that the chromatic index of a cubic Hamiltonian graph is 3.

2. Let P be the Petersen graph. Show that for any v e V(P), X'(P - v)

# 3 and that X'(P) = 4.

(Note that Castagna and Prins [721 have proved that every

generalized Petersen graph G other than the Petersen graph P is of

class 1.)

3. Prove or disprove that if G is a graph of class 1, then any induced

subgraph H of G is also of class 1.

4. Find the chromatic index of each of the five platonic graphs.

5+. Let C(r;t) be the graph obtained by arranging t copies of the null

graph Or into a cycle, and joining two vertices belonging to two

different Or's if and only if the two vertices lie in neighbouring

members of the cycle (The graph C(2;3) is shown in Fig.2.2). Prove

that C(r;t) is of class 2 if both r and t are odd, and is of class

1 otherwise (Parker [73]).

6. Prove that the chromatic index of the Coxeter graph (see Fig.3.8)

is 4 (Biggs [73J).

7+. Prove that if Kn has an (n-1)-colouring having the property that

the group of permutations of the vertices which induce permutations

on the colours acts triply transitively on the vertices, then n =

2d (d > 2) or n = 6 and for each value of n the colouring is unique

up to re-labelling of vertices and colours (Cameron [75a]).

8+. Two edge-colourings 4 and 4' of G are isomorphic if there is a

permutation of the vertices of G which sends each member of the

colour classes of 4' into a member of the colour classes of 4'.

13



Prove that for any integer n > 4, there are two non-isomorphic

colourings of K2n (Wallis [731).

9+. Suppose n is a colouring of Kn, n even. Let A(Kn;n) be the group

of automorphisms of Kn which maps edges of the same colour to edges

of the same colour and let SA(Kn;n) be the subgroup of A(Kn;n) that

preserves the colour classes of n. Prove that (i) IA(Kn;n)I t
l+log2n

n ; and (ii) SA(Kn;n) is an elementary abelian 2-group and

ISA(Kn;n)I divides n (Cameron [75b]).

2. A generalization of Vizing's theorem

We shall first give a generalization of Vizing's theorem. This

result is due to Andersen [771 and Gol'dberg [84]. (According to

Gol'dberg [84], he published this result in Russian several years

earlier.)

Let M be a multigraph without loops. An edge e of M is said to be

critical if X'(M - e) < X'(M). Suppose x'(M) = q, e = xy is a critical

edge of M, and n is a (q-1)-colouring of M - e. A fan F = [xy0,xyl,....

xyn], where y0 - y, n > 1, is a sequence of distinct edges xy0, xyl,...,

xyn such that for each i > 1, the edge xyi is coloured with a colour

absent at yi-l. The set of all end-vertices different from x of all

edges which are in at least one fan at x is denoted by Ax. We also

define Bx = N(x) - Ax. For any two vertices u, v in M, let E(u,v) be

the set of edges joining u and v, and let C(E(u,v)) be the set of

colours colouring the edges of E(u,v).

Suppose e = xy is a crtical edge of M with x'(M) = q, it is a

(q-1)-colouring of M - e, and F = [xy0,xyl,...,xyn] where y0 = y, is a

fan at x. We can now obtain another (q-1)-colouring of M - e by

uncolouring the edge xyn and assigning colour n(xyi) to the edge xyi-1

for all 1 < i < n. We shall refer to this process as recolouring the

fan F.

Lemma 2.1 Suppose M is a multigraph with a critical edge e = xy,

x'(M) = q, d(x) < q - 1, and it is a (q-l)-colouring of M - e. Then

(i) C'(z) fl C'(x) for every z e Ax.
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(ii) If j e C'(x) and i c C'(z), z c Ax, then the (j,i)n-chain having

origin z terminates at x.

(iii) If z, w e Ax are distinct, then C'(z) fl C'(w) = .

Proof. Suppose (i) is false. Let y, y1,..., yn where z = yn be the end-

vertices of the edges of a fan F at x and let i e C'(z) fl C'(x). Now we

can obtain a (q-1)-colouring of M by recolouring the fan F and assigning

colour i to the edge xz. This contradicts the fact that X'(M) = q.

Suppose (ii) is false and suppose z c Ax is such that the fan

F = [xy,xyl,...,xyn], where yn = z, has the minimum number of edges

among all the fans for which (ii) fails. Then the (j,i)n-chain C having

origin z does not terminate at any of the vertices yk, k < n, because n

is assumed to be minimum. Therefore, after interchanging the colours in

C, F remains a fan at x. But now j c C'(z) fl C'(x) in the new

(q-1)-colouring of M - e, contradicting (i).

Suppose (iii) is false. Let i e C'(z) fl C'(w) and let j e C'(x).

Then i # j and, by (ii), both the (j,i).R-chains having origins z and w

terminate at x, which is impossible.

Theorem 2.2 For any finite multigraph M = (V,E) with maximum valency A,

X'(M) < max {fl, sup sup [2
S
(d(v) + u(v,x))]}.

xeV A=N(x) vcA
IAI=2

Proof. Suppose this theorem fails for a finite multigraph M'. By

deleting some edges from M' we can obtain a multigraph M with q = X'(M)

= X'(M') > t(M') > A(M) such that M has a critical edge e - xy. Let n

be a (q-1)-colouring of M - e. Then d(x) = dM(x) < q - 1 and we can

apply Lemma 2.1.

We note that from the definitions of Ax and Bx, and by Lemma

2.1(iii), we have

(1) for any vertex v in Ax and any vertex z in Bx, C'(v) n C(E(z,x)) _ .

(Suppose j e C'(v) fl C(E(z,x)) for some v in Ax and z in Bx. Let

v = yp and let F = [x,y0,...,yp-l,yp>yp+lp...I be a fan at x. Since

j e C'(v) n C(E(z,x)), the last vertex in F cannot be yp. We recolour
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the fan F' _ [x,y0,...,yp+lI and let this new colouring of

M - xyp+l be y. Now F" _ [x,yp+l,yp,...] forms a fan in this new

colouring ' of M - xyp+l and the colour rr(xyp) c q(yp) fl C,,(yp+1),
contradicting Lemma 2.1(iii).)

Hence, by Lemma 2.1 and (1), if Ax = {y,yl,...,yn} and

Bx = (Zit ...zm}, then

C'(x), C'(y), C'(yl), ..., C'(yn), C(E(zl,x)), ..., C(E(zm)x))

are pairwise disjoint. Now, since X'(M - e) = q - 1, we have

n m

q - 1)
IC'(x)I

+ IC'(y)I + IC'(yi)I + I JC(E(Z ,x))I
j=1 j

n
(q - 1 - (d(x) - 1)) + (q - 1 - (d(y) - 1)) + J(q - 1 - d(yi))

i=1

+ (d(x) - I u(v,x)).
v e A

x

This gives (n + 1)q < 1 (d(v) + u(v,x)) + (n + 1) - 2. Hence
v e A

x

q 11-0 d(y1) + u(yi.x))
+ 1 -

2

n+1 n+l

t max [. E (d(v) + u(v,x))],
vcA

IAH2

contradicting the assumption that the theorem is false. //

Corollary 2.3 (Vizing's theorem) If M is a multigraph with maximum

valency A and maximum multiplicity u, then

XI(M) < A + P.

In particular, if G is a graph with maximum valency A, then

XI(G) = A or X'(G) = A + 1.

Corollary 2.4 (Ore [67]) If M is a multigraph with maximum valency A,

then

X'(M) < max {A, sup [2 Mx) + d(y) + d(z))]},

where the supremum is taken over all paths with three vertices x, y and Z.
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Corollary 2.5 (Shannon [49]) If M is a multigraph with maximum valency

A, then

X, M) < [ A].

Remarks.

(1) Bosak [72] proved that Corollaries 2.3 and 2.5 are also true for

infinite multigraphs.

(2) Ehrenfeucht, Faber and Kierstead [84] gave an alternate proof of

Theorem 2.2 using counting argument instead of fan recolouring.

The following theorem gives a sufficient condition for a graph to

be of class 2. This theorem was proved by Beineke and Wilson [73], but

it was implicit in the work of Vizing [65a].

Theorem 2.6 Let G be a graph of order n, size m and having maximum

valency A. If m > A[2], then G is of class 2.

Proof. Suppose X'(G) - A. Let it be a A-colouring of G and let

El,...,EA be the colour classes. Then 1E1I < [n]. Hence m < [n],

yielding a contradiction.

The total deficiency of a graph G is defined to be E(A(G) - d(v))

where the summation extends to all vertices v of C.

Corollary 2.7 If G is a graph of odd order, having maximum valency A

and total deficiency less than A, then G is of class 2.

Corollary 2.8 If G is a regular graph of odd order, then G is of

class 2.

Corollary 2.9 Suppose H is a graph of even order and is regular of

degree d > 2. If G is obtained from H by inserting a new vertex into

one edge of H, then G is of class 2.

In §4, we shall apply the following theorem to construct a class of

chromatic-index critical graphs.
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Theorem 2.10 (Laskar and Hare [71]) Let G = 0t be the complete

t-partite graph having r vertices on each partition. Then

r r(t - 1) + 1 if rt is odd
x'(G)

r(t - 1) if rt is even

Proof. Since 0t is regular of degree r(t - 1), by Corollary 2.8, if rt

is odd, then X'(G) = r(t - 1) + 1.

Suppose rt is even. To show that X'(G) = r(t - 1), we need only to

establish an r(t-1)-colouring of G.

Case 1. r = 2s.

Let V(G) (V1 U V2) U (V3 U V4) U ... U (V2t-1 U V2t) where each

vertex of Vi = is adjacent to every other vertex,

except for those in Vi and the other Vj grouped in the parentheses with

Vi.

From the fact that X'(K2t) = 2t - 1, we know that the set of

unordered pairs of numbers from the set {1,2,...,2t-1,2t} can be

partitioned into 2t - 1 sets A0, A1, ', A2t_2, where a given number

occurs as a member of an unordered pair exactly once in each Aj.

Without loss of generality, we may assume that

A0 = {{1,2}, {3,4}, ..., {2t-1,2t}}.

Next, from the fact that X'(Ks,s) = s, we deduce that the set of

ordered pairs of numbers from (1,2,...,s} can be partitioned into s sets

B10 ..., Bs where in this case a given number occurs exactly once as a

first component and exactly once as a second component of an ordered

pair in each Bj. The sets A2t-2 and B1,..., Bs will now be used

to produce an r(t-l)-colouring of C.

Suppose vip and vjq are two vertices that are adjacent in G. Then

there is a unique g such that {i,j} e Ag, and a unique h such that

(p,q) a Bh. Thus there exists a map it : vipvjq + (g,h) from E(G) onto

the set of ordered pairs (g,h), 1 < g < 2t - 2, 1 < h < s, such that

adjacent edges have different images. This map it can be regarded as a

proper colouring of C. Hence X(G) _ (2t - 2)s - r(t - 1).
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Case 2. t is even.

As in Case 1, let A0, A1, ..., At-2 and B1,..., Br be determined

from the values of x'(Kt) and X'(Kr,r) respectively. Let V = V1 U

V2 U ... U Vt, and let

Vi = {vil,vi2....,vir}

where vip and vjq, i ¢ j, are adjacent vertices in G. Then there is a

unique g such that {i,j} a Ag and a unique h such that (p,q) a Bh. Thus

there exists a map n : vipvjq + (g,h) from E(G) onto the set of ordered

pairs (g,h), 0 t g c t - 2, 1 4 h < r, such that adjacent edges have

different images. This map again can be regarded as a proper colouring

of G. Hence X'(G) = r(t - 1).

Example x'(043) = 8.

Here

Al = {{1,3}, {2,5}, {4,6}}, A2 = {{1,4}, {2,6}, {3,5}},

A3 = {{1,5}, {2,4}, 13,6}}, A4 = {{1,6}, {2,3}, {4,5}},

B1 = 1(1,1), (2,2)}, B2 - {(1,2), (2,1)}.

Using the notation and the construction given in the proof of Case 1,

the edges of the graph 04 can be coloured with the eight colours (1,1),

(1,2), (2,1), (2,2), (3,1), (3,2), (4,1) and (4,2) as shown in the

following table.

Edges °11°31 °11°32 °11°41 °11°42 °11°51 °11°52 °11°61 °11°62

°12v32 °12°31 v12v42 v12v41 °12°52 v12v51 v12°62 °12°61

v21v51 v21v52 v2lv61 v21v62 °21°41 °21°42 v21v31 °21°32

°22°52 °22°51 °22°62 °22v61 °22°42 °22°41 °22°32 °22v31

v41v61 °41°62 v31v51 v31v52 v31v61 v31v62 v41v51 °41°52

°42°62 °42°61 °32°52 °32°51 V32V62 V32v61 °42°52 °42°51

Images (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)
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Exercise 2.2

17 Applying Theorem 2.6, prove that if H is a graph of odd order

such that H has a vertex of valency t and all other vertices are of

valency A A(H), then any graph G obtained from H by deleting not

more than 2 t - 1 edges is of class 2.

2: Let G be a graph with edge-independence number a, i.e. G has a

maximum matching of cardinality a. Show that if e(G) > A(G)a, then

G is of class 2.

3. Prove that if G is a regular graph which contains a cut-vertex,

then G is of class 2.

4. Let G be a graph of order n. Prove that

(a) if n is even, then

n - 1 < X'(G) + X'(G) < 2n - 2 and 0 < X'(G)X'(G) < (n - 1)2;

(b) if n > 3 is odd, then

n < x'(G) + X'(G) < 2n - 3 and 0 < X'(G)X'(G) < (n - Mn - 2).

Show that all these results are best possible (Vizing [65a], Alavi

and Behzad [71]).

5. Following the proof of Theorem 2.10, find a 6-colouring of 02.

6t' Prove that if G is an infinite graph such that every finite

subgraph of G is k-colourable, then G is k-colourable (Neumann

[54]).

7. A graph G is said to be uniquely k-colourable if any two

k-colourings of G induce the same partititon of E(G). Show that

every uniquely k-colourable graph G # K3 has A(G) = k. Hence, or

otherwise, show that every uniquely k-colourable regular graph is

Hamiltonian and that every uniquely 3-colourable cubic graph

contains exactly three Hamilton cycles (Greenwell and Kronk [73]).

8. Prove that every connected regular graph of order 4 or 6 is of

class 1.

20



3. Critical graphs

We have shown that bipartite graphs are of class 1, the graph 0t is

of class 1 if and only if rt is even, the complete graph Kn is of class

1 if and only if n is even and that any regular graph of odd order is of

class 2. Relatively speaking, there are considerably more class 1

graphs than class 2 graphs. This fact is reflected by a theorem of

Erdos and Wilson [77] which says that the probability of a graph of

order p, which is of class 1, approaches 1 as p tends to infinity.

However, the problem of determining which graphs belong to which class

is extremely difficult. One way of tackling this problem is through the

study of critical graphs which was first introduced by Vizing.

A graph G is said to be (chromatic-index) critical if G is

connected, of class 2, and x'(G - e) < X'(G) for any edge e of G. If G

is critical and A(G) = A, then G is said to be A-critical. This notion

is parallel to the notion of criticality with respect to vertex-

colourings which was introduced by Dirac in 1952.

The importance of this concept of criticality is that once we know

that a graph G is A-critical, and if C* is obtained from G by adding

edges joining non-adjacent vertices of G such that A(G*) - A(G), then G*

is definitely of class 2. This certainly helps quite a lot in deciding

which graphs are of class 2.

There are other notions of criticality with respect to edge-

colourings. However, among these notions, the one introduced above

seems to be the most important one in the sense that all other known

notions of critical graphs are related to it (for details, see Hilton

[77]).

The following two simple results were first observed by Vizing

[65a].

Theorem 3.1 Suppose G is A-critical and vw c G. Then d(v) + d(w) >

A + 2.

Proof. Let it be a A-colouring of G - vw. If (d(v) - 1) + (d(w) - 1)

< A, then C'(v) (1 C'(w) 0 $ and n can be extended to a A-colouring of G.
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Theorem 3.2 A critical graph contains no cut-vertices.

Proof. Suppose G is a A-critical graph containing a cut-vertex v. Let

H1,..., Hr be the components of G - v. Each of the subgraphs Gi, i = 1,

..., r obtained by joining v to Hi is A-colourable. These A-colourings

of Gi can be combined to yield a A-colouring of G by making the colours

of the edges incident with v all different. This contradiction shows

that G cannot contain a cut-vertex.

The next theorem shows that a class 2 graph G contains a whole

range of k-critical subgraphs where k runs from 2 to A(G). This theorem

will be used in the construction of critical graphs.

Theorem 3.3 (Vizing [65b]) If G is a graph of class 2, then G contains

a k-critical subgraph for each k satisfying 2 < k < A(G).

Proof. Let A(G) = A. We can obtain a A-critical subgraph H of G by

removing all the edges of G whose deletion does not lower the chromatic

index.

We now prove that G also contains a k-critical subgraph for each k

satisfying 2 < k < A. It is clear that now A > 3. Let u e V(H) be such

that d(u) = A. Since A > 3, IV(H)I > 4 and thus H has two vertices v

and w such that v # u # w and vw a H. Let it be a A-colouring of H - vw

and let E1, ..., EA be the colour classes of it. Since C'(v) n C'(w)

there are i e C'(v) and j e C'(w). By taking away any A - k of the

colour classes E1,..., EA which are not Ei or Ej, we obtain a subgraph J

of H such that A(J) k and x'(J) = k + 1. (For each z (# v, w) a V(H),

after taking away A - k colour classes, the remaining edges incident

with z are coloured with at most A - (A - k) = k colours. Hence di(z) <

k. For the vertices v and w, after taking away A - k colour classes,

the remaining edges in H - vw which are incident with v or w are

coloured with at most k - 1 colours. Hence A(J) < k. However, it is

clear that dj(u) = k.) After removing some edges from J, if necessary,

as in the first part of this proof, we obtain a k-critical subgraph

of G. //

We now prove a generalization of another important result of Vizing
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about the structure of critical graphs.

Theorem 3.4 (Andersen [77]) Let M = (V,E) be a multigraph for which

q = X'(M) = max (d(u) + max u(v,u))
ueV veV

and for which M has a critical edge e = xy. Then x is adjacent to at

least q - (d(y) + u(y,x)) + 1 vertices v different from y such that

d(v) + u(v,x) - q.

Proof. Let t - d(y) + u(y,x). Consider a (q-1)-colouring w of M - e.

We shall show that the q - t + 1 vertices mentioned in the statement of

the theorem all belong to Ax. Using Lemma 2.1 (obviously d(x) < q - 1)

we get (as in the proof of Theorem 2.2)

q - 1 ) I (q - 1 - d(v)) + (q - d(y)) + (q - d(x))
v e AX {y}

+ (d(x) - u(v,x)) giving
v e A

x

E (q - d(v) - u(v,x)) < (I xI - 1) - (q - t + 1)
v e AX {y}

Now every term of the sum on the left-hand side of this inequality

is non-negative. Hence there are at least q - t + 1 vertices v in

Ax - {y} for which d(v) + u(v,x) = q.

Corollary 3.5 Let M = (V,E) be a critical multigraph for which

q = X'(M) = max (d(u) + max u(v,u))
ueV veV

Put m(M) = min (d(u) + min u(v,u)). Then we have
ueV veN(u)

(1) every vertex x of M is adjacent to at least two vertices v for

which d(v) + u(v,x) = q; and

(ii) M contains at least max {3, q - m(M) + 1} vertices w for which

d(w) + max u(u,w) = q.
ueV
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Suppose G is a graph. If v e G is of valency A(G), then v is

called a major vertex, otherwise a minor vertex. From the above theorem

and its corollary, we have the so-called Vizing's Adjacency Lemma which

is abbreviated as VAL, because it will be used very often throughout the

rest of this chapter.

Corollary 3.6 (VAL) Let G be a A-critical graph and let vw e G where

d(v) - k. We have

(i) if k < A, then w is adjacent to at least A - k + 1 major vertices

of G;

(ii) if k - A, then w is adjacent to at least two major vertices of G;

(iii) G has at least A - 6(G) + 2 major vertices; and

(iv) G has at least three major vertices.

Kxercise 2.3

1. Show that there does not exist a critical graph having exactly two

minor vertices, one of which is of valency 2 (Yap [801).

2. Prove that if G is a A-critical graph and if M is a nonzero

matching in G, then

(a) there exists a (A+1)-colouring of G in which M is a colour

class; and

(b) x'(G - M) = x'(G) - 1.

3. Let G be a A-critical graph, vw e G and let it be a A-colouring of

G - vw. Prove that

(a)

(b)

(c)

(d)

JC(v) U C(w)I - A;

IC(v) fl C(w)I - d(v) + d(w) - A - 2;

IC(v).. C(w)I - A + 1 - d(w); and

IC(w) I C(v)I - A + 1 - d(v) (Serge [73; .254]).

4. Verify that the following graph is 3-critical.
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Figure 2.3

5 Verify that the graph given in Fig.2.4 is 3-critical (Gol'dberg

[79b]).

O-O-O 0--0--Q 0--O---U

b- -a--- b- b

Figure 2.4 Figure 2.5

6t Verify that the graph given in Fig. 2.5 is 4-critical. (This

graph was produced by A. G. Chetwynd, see Yap [801.)

7. Prove that there does not exist a 4-critical graph of even order n

having valency-list 2324n-3 (For definition of valency-list, see

$5.) and that for A > 10, there does not exist a A-critical graph

of even order n having valency-list 232An-3.

8': (a) Does there exist a 4-critical graph of odd order n having

valency-list 2324n-3

(b) For A = 6 or 8, does there exist a A-critical graph of even

order n having valency-list 2326n-3

?

9. Prove that if G is a A-critical graph of odd order n having size at

least A(n23) + 6(G) + 1, then for every x c G such that d(x) = 6(G),

G - x has a 1-factor.

10': Is it true that if C is any A-critical graph of odd order, then for

each x c G such that d(x) - 6(G), G - x has a 1-factor ?
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11. Prove that if G is a A-critical graph of odd order n having size at

least A(223) + 2, then G has a minor vertex y such that G - y has a

1-factor.

12. Let H be the subgraph induced by the major vertices of a graph G.

Prove that if H contains no cycles, then G is of class 1 (Fiorini

and Wilson [77; p.78]).

13. A graph G is pc-critical (proper-class critical) if G is of class 2,

but every proper subgraph G' of G is of class 1. A graph G is

pi-critical (proper-index critical) if X'(G') < X'(G) for every

proper subgraph G' of G. A graph G is ei-critical (edge-index

critical) if X'(G - e) < X'(G) for each edge e of G.

(a) Prove that a graph is pc-critical if and only if it is a cycle

of odd length.

(b) Prove that a graph is pi-critical if and only if it is

ei-critical and has no isolated vertices (Hilton [77]).

14. Suppose G is a graph of order 2n having r major vertices. Prove

that if A(G) > n +

y
r - 4, then G is not critical (Chetwynd and

Hilton [-b]).

4. Constructions for critical graphs

In this section we shall introduce various methods for constructing

critical graphs. We need the following definitions. Suppose x c G is

such that d(x) = m > 2, and N(x) = {x1,..., xm}. We say that the graph

H is obtained from G by splitting x into two vertices u and v (u,v f G)

if

V(H) = V(G - x) U {u,v} and

E(R) = E(G - x) U {uv, uxl ,..., uxr, vxr+l ,..., vxm}

for some r satisfying 1 < r < m. From this definition, we see that if H

is obtained from a graph G by inserting a vertex v into an edge whose

end-vertices are both of valency at least 2, then H can be considered as

a graph obtained from G by splitting a vertex x into two vertices x and

v. Two graphs obtained from the graph K4,4 by splitting a vertex into
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two vertices u and v are shown in Fig.2.6.

Figure 2.6

We first prove

Lemma 4.1 If G is a connected graph with forbidden induced subgraph

K2 U 01, then either G - K1, or G = Or1 + Or2 + ... + 0rt + Ks where

ri > 2 for all i = 1, 2,..., t.

Proof. Suppose G # Kn. Let u and v be two non-adjacent vertices of

G. By the 'forbidden induced subgraph condition', we have N(u) _

N(v). Let M(u) = V(G) - N(u) and let W = M(u) - {u,v}. If W - $, then

G - 02 + H where H - <N(u)>. If W ¢ , let w e W. Again, by the

'forbidden induced subgraph condition', N(w) = N(u) and <u,v,w> a 03.

Hence, in any case, <M(u)> s Or1 for some integer rl > 2.

Next, suppose H # Km or Om. We first show that H is connected. If

H is not connected, let H1 and H2 be two components of H. Since H # Om,

H1 (say) has two adjacent vertices x and y. Now for any vertex z of H2,

<x,y,z> a K2 U 01 is a forbidden induced subgraph of G. This

contradiction shows that H is connected and the lemma follows by

induction on the order of G.

Corollary 4.2 If a graph G is connected, regular of degree at least 2

with forbidden induced subgraphs K2 U O1, then G - 0t for some integers

r> 1, t>3orr>2, t>2.
From the above corollary and Theorem 2.10, we have
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Lemma 4.3 If a graph C is connected, regular of degree at least 2 with

forbidden induced subgraphs K2 U 01 and G is of class 1, then G = Or

where rt is even.

We now apply Lemma 4.3 to prove the following theorem.

Theorem 4.4 (Yap [81a]) Let r and t be two positive integers such that

rt > 4 is even. Then the graph H obtained from G = 0t by splitting a

vertex x into two vertices u and v is critical.

Proof. Let A - A(G) and let rt = n. Then A = r(t - 1). If A - 2, then

G = 02 = K2,2 and H = C5 is 2-critical. Hence, from now on, we assume

that A > 3.

For convenience, we introduce an auxiliary graph K = H - uv. We know

that IHI = IGI + 1 = n + 1 is odd and that e(H) nA + 1 > A[nd].

Hence, by Theorem 2.6, H is of class 2.

Let J = G - x and let v be a A-colouring of G. We now modify u to

a A-colouring w of K as follows : for any edge f of K,

I u(f) if f e J
n(f)

v(xy) if f = uy or vy, y e NG(x)

We observe that each of the colours 1, ..., A appears exactly once

at either vertex u or vertex v in this A-colouring n of K.

We shall now prove that it can be modified to a A-colouring A of

H - e for any edge e of H and so H is critical.

Suppose e - uv. Then H - e = K and A can be chosen as it.

Suppose e = uy, y e NG(x). (The argument for the case e = vz,

z e NG(x) is similar.) We choose A as follows : for any edge f of

H - e,
Iw(f) if f e K

A(f) _
n(uy) if f = uv

Suppose e = yz a J. We assume that n(e) - 1.
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Case 1. uy, vz c H.

Since A > 3, without loss of generality, we may assume that n(vw)

where w e J. We also let n(uy) - k.

Let C be the (l,k),R-chain having origin v. We note that besides y

and z, u and v are the only minor vertices in K - e. Therefore, the

terminus of C is either u, or y, or z. In this case, it is clear that

the terminus of C must be z because colour 1 is absent at y and u in the

A-colouring it of K - e and n(uy) - k. By interchanging the colours in C

and assigning colour 1 to the edge uv, we get a A-colouring A of H - e.

(We call such an argument the Kempe-chain argument.)

Case 2. vy, vz a H.

(The argument for the case uy, uz e H is similar.)

If colour 1 is absent at v in the A-colouring it of K, we replace

colour n(vy), which has been assigned to vy, by colour 1 and we assign

colour n(vy) to the edge uv to get a A-colouring A of H - e.

Suppose 1 s Cn(v) and i ! Cn(v). Let C be the (l,i)n chain having

origin v. If the terminus of C is u, then y, z ¢ C. By interchanging

the colours in C, we reduce it to the previous case. Hence we may

assume, without loss of generality, that the terminus of C is y. Now

z, u ¢ C and by interchanging the colours 1 and i in C, we find that

colour 1 is absent from both vertices u and v in this new colouring of

H. Thus, by assigning colour 1 to the edge uv, we get a A-colouring A

of H - e.

Case3. vyeH,uzJH.
(The argument for the case uy a H, vz E H is similar.)

The proof for this case is exactly the same as the proof for Case 2.

Cases 1 and 2 correspond to the case <x,y,z> a K3 and Case 3

corresponds to the case <x,y,z> a P3. The proof is now complete.

Corollary 4.5 For any two integers A and a such that A > 3 and 2 <

a < A, we can construct a A-critical graph containing a vertex of

valency a.
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Remarks

1. Fiorini (see Fiorini and Wilson [77;p.701) has shown that if the

graph H is obtained from 0m, K2m, 02 by inserting a vertex into an edge

of these graphs, then H is critical. Hence Fiorini's result is a

special case of a subclass of the class of critical graphs constructed

in Theorem 4.4.

2. The implicit 'forbidden induced subgraph condition' in Theorem 4.4

is not redundant as can be seen from the graph G given in Fig.2.7 : G is

3-regular and is of class 1. But K2 U 01 is an induced subgraph of G.

The graph H - pq is the Petersen graph minus a vertex and is of class 2

(see Ex.2.1(2)). In fact, H - pq is 3-critical (see Ex.2.3(4)).

x

G

Figure 2.7

H

3. Chetwynd and Hilton [84] proved that if G is obtained by removing

any (n-3)/2 edges from Kn, for odd n > 5, then G is (n-1)-critical.

Plantholt [-a] proves that any graph G with A(G) - n which can be

obtained by removing 2n - 1 edges from K1 + Kn n is n-critical. Both of

these results generalize a special case of Theorem 4.4. It is nice to

know whether any graph G with A(G) = r(t - 1) obtained by removing any

rt - 1 edges from K1 + 0r, where rt > 4 is even, is r(t-1)-critical.

The next theorem provides a construction for A-critical graphs from

some known A-critical graphs of smaller order. This construction is due

to Jakobsen [73] but the method was originally due to Hajos [61). We

shall call this construction the 10-construction.

Theorem 4.6 (HJ-construction) Let G and H be two A-critical graphs and

K be a graph obtained from G and H by identifying u e V(G) and v e V(H)

such that dG(u) + dH(v) < A + 2, removing edges uz e C and vz' e H and

joining the vertices z and z'. Then K is also A-critical.
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Proof. It is clear that K is connected and A(K) = A.

We first prove that K is of class 2. Suppose otherwise. Let v be

a A-colouring of K and let nr(zz') = 1. Then there is an edge e of G

incident with u such that a(e) = 1 otherwise X'(G) = A. Similarly, there

is an edge e' of H incident with v such that ir(e') = 1. But since u and

v have been identified, e and e' are adjacent in K and thus K has two

adjacent edges receiving the same colour under ir, which is false (see

Fig.2.8).

Figure 2.8

It remains to show that X'(K - e) = A for any edge e of K. If

e = zz', this is clear, since any two A-colourings of G - uz and H - vz'

can be combined to give a A-colouring of K - zz'. We may now assume

that e e G - uz (the case that e e H - vz' can be settled in a similar

way). It is clear that X'(H - vz' + zz') = A and for every A-colouring

0 of H - vz' + zz', there is an edge vy in H such that 4)(vy) _ (zz').

It is also clear that any A-colouring W of G - e gives rise to a

A-colouring y' of G - uz - e + zz' in which the colour assigned to zz'

is absent at u. Finally, the two A-colourings 0 of H - vz' + zz' and

of G - uz - e + zz' can be combined to give a A-colouring of K - e. //

The critical graphs constructed by Theorem 4.4 are of odd order.

If the critical graphs G and H given in Theorem 4.6 are of odd order,

then the critical graph K constructed from the HJ-construction is also

of odd order. Our next theorem provides a construction for a A-critical

graph H of even order from a A-critical graph G of odd order if G has a

vertex u of valency 2 and another vertex v # u of valency at most

(A+2)/2.

Lemma 4.7 Let A > 3 be an integer and let G be a A-critical graph

having two vertices u and v each of valency 2. Suppose N(u) _ {w,x} and
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N(v) = {y,z}. Then

(1) there exists a A-colouring w of G - vz such that n(vy) = 1,

n(ux) = 1 and n(uw) = 2; and

(ii) there exists a A-colouring A of G - vz such that X(vy) - 1

A(ux) - 2 and X(uw) - 3.

.

A proof of this lemma can be found in Yap [801. Since the proof is

easy, we shall leave it as an exercise.

Lemma 4.8 Let A > 4 be an integer. If there exists a critical graph G

of odd order such that G has two vertices of valency 2, then there

exists a A-critical graph of even order.

Proof. Let u and v be two vertices of C of valency 2, N(u) _ {w,x} and

N(v) _ {y,z}. Let G' be a copy of G such that each of u', v', w', x',

y', z',... in G' corresponds respectively to u, v, w, x, y, z, ... in G.

Let H1 be the A-critical graph constructed, using the

HJ-construction, from G and G' by identifying the vertices v and v',

removing the edges vz and v'z' and joining the vertices z and z'.

Let H be the graph obtained from H1 by identifying u and u'. Then

dH(u) = 4, H is of even order and is of class 2. We now prove that

X'(H - e) - A for any edge e in H.

We may assume that e is either zz' or an edge in G - vz since the

corresponding argument for e e G' - v'z' is exactly the same.

Suppose e - uw. (The proof for the case e = ux is similar.) By

Lemma 4.7, there exists a A-colouring it of G - e such that w(ux) = 2,

n(vy) = 2 and n(vz) = 1. Again, by Lemma 4.7, there exists a

A-colouring A of G' - v'z' such that A(v'y') = 1, A(u'w') - 3 and

A(u'x') - 1. Since G' is critical, colour 1 is absent at z'. Hence the

A-colouring it of G - uw + zz' and the A-colouring A of G' - v'z' + zz'

can be combined to give a A-colouring of H1 - e as shown in Fig.2.9.

Thus H - e is A-colourable.

Suppose e - zz'. Again, by Lemma 4.7, there exists a A-colouring it

of G - vz such that n(vy) - 2, ir(uw) = 4, n(ux) = 2 and there exists a

32



A-colouring A of G' - v'z' such that A(v'y') = 1, X(u'w') - 3, A(u'x')

- 1. Then it and A can be combined to give a A-colouring H1 - zz' and so

H - zz' is also A-colourable.

y

Figure 2.9

Suppose e is not incident with u or v. Let n be a A-colouring of

H1 - e such that ir(zz') = 1, n(vy) - 2, ir(uw) - j and n(ux) - k.

If {j,k} n {1,2} - , then by Lemma 4.7 we can assign the colours 1

and 2 to the edges u'w', u'x' under it and so H - e is A-colourable.

If {j k) - {1,2}, then by Lemma 4.7 we can assign the colours 3 and

4 to the edges u'w', u'x' under it and so H - e is A-colourable.

If j = 2, k ¢ 1, then by Lemma 4.7 we can assign the colours 1 and

i 4 1,2,k to the edges u'w', u'x' under it and so H - e is A-colourable.

If j - 1, k ¢ 2, then by Lemma 4.7 we can assign any two colours

other than colours 1 and k to the edges u'w', u'x' under it and so H - e

is A-colourable.

Finally, the case e - vy can be settled in a similar way.

Theorem 4.9 (Yap [80]) Let A > 4 be an integer. If there exists a

A-critical graph K of odd order such that K has a vertex u of valency 2

and another vertex v # u of valency at most (A+2)/2, then there exists a

A-critical graph of even order.

Proof. Let K' be a copy of K such that each of u', v', ... in K'

corresponds respectively to u, v, ... in K.

Let G be the graph obtained from the HJ-construction by identifying

v and v', removing an edge vz from K, removing an edge v'z' from G' and

joining the vertices z and z'. Then G is of odd order, G is A-critical

and contains two vertices u and u' of valency 2. Theorem 4.9 now
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follows from Lemma 4.8.

Remarks.

1. It has been proved that there are no critical graphs of even order

p < 10 and that there are no 3-critical graphs of order 12 and 14 (see

Fiorini and Wilson [77]). Being prompted by these results, Jakobsen

[74] made the following conjecture.

Critical Graph Conjecture : There are no critical graphs of even order.

(A similar conjecture was posed by Beineke and Wilson [73].)

2. M. K. Gol'dberg [79b] has constructed an infinite family of

3-critical graphs of even order, the smallest of which has order 22

which is shown in Fig.2.4. The subsequent graphs are obtained by adding

pairs of 7-vertex blocks and joining the "hanging edges" to the base

cycle as shown in Fig.2.10.

4--0 ,-O 0-O q- O-O
7-vertex block I I

c

hanging edge

base cycle

Figure 2.10

Figure 2.11
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3. Fiol [80] independently found the counterexample to the Critical

Graph Conjecture given in Fig.2.4. He also obtained two 4-critical

graphs of order 18 and 30 which are shown in Fig.2.11 (quoted from

Chetwynd and Wilson [83]).

4. A 4-critical graph of even order can be constructed by applying the

graph given in Fig.2.5 to Theorem 4.9. However, A-critical graphs of

even order for A > 5 are still awaiting construction.

5. Col'dberg [77] has proved that if G is a A-critical multigraph with

x'(G) > S (9A + 6), then G is of odd order. This led him to formulate

the following new conjecture.

Conjecture (Gol'dberg) There exists a constant k > 2 such that every

A-critical multigraph with at most kA vertices is of odd order.

Exercise 2.4

1. Prove Lemma 4.7.

2. Prove that there are no critical graphs of order 4 and order 6.

3. Find all critical graphs of order 5.

4. Prove that there are no regular A-critical graphs for A > 3.

5. For i - 1,2,...,t, let Gi be a 3-critical graph obtained from C2s+1

by adding an independent set Si of s edges. Prove that if t <

2s - 4, and if the sets Si are pairwise disjoint, then the graph G

obtained from C2s+l by adding all of the sets Si is a (t+2)-critical

graph (Fiorini and Wilson [77;p.80]).

6. Let A > 3 be an odd integer, let G be a A-critical graph and let

H = KA = <w1,...,wA>. Suppose v is a major vertex of G and

N(v) _ {vl,...,vA}. Let K be the graph obtained from G and H by

deleting v from G and joining each vi to wi for all i = 1,...,A.

Prove that K is A-critical and give an example showing that the

result need not be true if A is even (Fiorini and Wilson [77]).

7. Let A )- 3 be an odd integer, let G be a A-critical graph and let

H = KA,A_1 having bipartition {wl'" .wA-1} U full .... uA}. Suppose v

is a major vertex of G and N(v) _ {vl,...,vA}. Let K be the graph
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obtained from G and H by deleting v from G and joining each vi to wi

for all i - 1,...,A. Prove that K is A-critical and give an example

showing that the result need not be true if A is even (Fiorini and

Wilson [771).

8. Prove the following 'converse' of the result of Ex.3.4(6) :

Let A > 3 be an odd integer and let K be a A-critical graph which is

separable by a set E of A independent edges into two graphs G and

H. If each vertex in H is a major vertex in K, prove that the graph

obtained from K by contracting H into a single vertex is also

A-critical (Fiorini and Wilson [771).

9. A graph G is vi-critical (vertex-index critical) if X'(G - u) <

X'(G) for each vertex u of G. A graph G is vc-critical (vertex-

class critical) if G is of class 2, but G - u is of class 1 for each

vertex u of G. Show that the graph G obtained from K6 by inserting

a new vertex into any edge is vi-critical but not vc-critical

(Fiorini [781).

10. Let H and K be the two graphs given in Fig.2.12. Let C be the graph

obtained from H and K by identifying vertex u with vertex a,

deleting the edges ux and ag from H and K respectively, and joining

the vertices x and g by an edge. Let G* be the graph obtained from

G by joining the vertices v and y by an edge (see Fig.2.13). Show

that G* is not vi-critical (Fiorini [78]).

H :
K :

Figure 2.12

G* .

Figure 2.13
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5. Bounds on the size of critical graphs

We shall now obtain some upper and lower bounds on the size of

critical graphs. The main result of this section is an inequality

involving the number of vertices ni of valency i in a critical graph G

due to Fiorini (Theorem 5.3). Using Fiorini's inequality, we are able

to obtain very sharp lower bounds on the sizes of A-critical graphs for

small A. We thus verify Vizing's conjecture on the lower bound for the

size of A-critical graphs where A is small.

Theorem 5.1 below is taken from Fiorini and Wilson [77].

Theorem 5.1 If G is a A-critical graph of order n having minimum

valency 6, then

I 2 - 1)A + 1 if n is odd
e (G) <

n - 2)A + 6 - 1 if n is even

Proof. If n is odd, then e(G) < 2 n - 1)A + 1 follows immediately from

Theorem 2.6.

If n is even, let v be a vertex of valency 6. By VAL, G has a

major vertex vl adjacent to v. Let n be a A-colouring of G - vvl. Then

there is i e C(v) \ C(vl). Let v2 be such that n(vv2) - i and let G' be

the multigraph obtained by adding an edge vlv2 in G - v. If v1 and v2

are joined by two edges coloured with colours i and j, we transform G'

into a graph G by replacing the double-edge v1v2 by a copy of KA,A with

two non-adjacent edges removed as shown in Fig.2.14. Otherwise we let

i
vX V2 -p

j

Figure 2.14
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G' + v1v2. In either case, the graph G is of class 1 and has odd

order. It follows that, if r(G) and t(G) are the total deficiencies of

C and G respectively, then t(G) = t(G) - (A - 6) + (6 - 2). However, by

Corollary 2.7, we have r(G) > A. Hence t(G) > 2(A - 6 + 1).

Consequently, e(G) < 2.(n - 2)A + 6 - 1.

Corollary 5.2 There are no regular A-critical graphs for A > 3.

Proof. By Corollary 2.7, there are no regular A-critical graphs of odd

order if A > 3. By Theorem 5.1, there are no regular critical graph of

even order. //

Theorem 5.3 (Fiorini [75c]) Let A > 3 be an integer. If G is a

A-critical graph, then

A-1 n.

n > 2
=

J
A

j2 (j-1)

where nj is the number of vertices of valency j in G.

Proof. To each major vertex v in G, assign a (A-2)-tuple (i2,...,iA_1),

where it is the number of vertices of valency t adjacent to v. Let

be the number of major vertices of G associated with the

(A-2)-tuple (12,,...iA_1). Let M be the set of all major vertices of G

and for each j = let Ai be the set of vertices of valency j

in G. By counting the number of edges joining Aj and M in two different

ways and noting that each vertex of G is adjacent to at least two major

vertices, we have

2nj < I ij n(i2,...'iA-1)
(S)

where the summation (S) extends over all (A-2)-tuples associated with

any major vertex. It follows that

A-1 2n A-1 i

j2 J-1 j2 (S) J-1
n(i2,...,iA1)

A-1 i A-1 i.

_ n(i ,...,i ) I
3

< I n(i i ) J
(S) 2 A-1 j=2 j-1 (S)

2""' A-1
J-2

q-1
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where q is the smallest index of all non-zero elements of the (A-2)-

tuples But by VAL, the vertex v is adjacent to at least

- q + 1 major vertices and so it must be adjacent to at most

- (A - q + 1) = q - 1 minor vertices. Thus i2 + ... + i6_1 C q - 1,

and so
A-i n.

2 j1l 5 I nA.
j= =2

(S)

Corollary 5.4 Suppose G is a A-critical graph of order n and size in.

We have

U) if A = 3, then m > (5n + 1);

(ii) if A = 4, then m >

3

n ; and

(iii) if A > 5, then m > n
(3A

A

- 5).

Proof. If A = 3, then 2m = 2n2 + 3n3 = 2(n2 + n3) +

2

n3 +

2

n3 >

2n + n3 + n2. Hence m > 4 (5n + 1).

10If A = 4, then 2m = 2n2 + 3n3 + 4n4 > 2n2 + 3n3 + n4 +

3 (n3 + 2n2) =
0

n. Hence m >

3

n

For A > 5, 2m = 2n2 + 3n3 + ... + AnA

> 4n2 + 4n3 + ... + (A - 1)nA-i + (A - 1)nA

> 4(n - n
A
) + (A - On, = 4n + (A - 5)nA.

However, by VAL, each vertex of G is adjacent to at least two major

vertices, and so AnA > 2n. Part (iii) now follows by combining these

two inequalities. //

The valency-list of a graph G is 1n1 2n2 ... knk where nj is the

number of vertices of valency j in G. If nj = 0, the factor j0 is

usually omitted in the listing of the valency-list. The following

theorem (Yap [81b]) answers a question raised by Jakobsen [74;p.269].

Theorem 5.5 For each integer A > 5, there are no A-critical graphs

having valency-list 2rA2r.
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Proof. Suppose there is such a graph G. By VAL, each major vertex of G

is adjacent to exactly one vertex of valency 2. Let x be a vertex of

valency 2 and let N(x) _ {y,z}, e = xz. Let n be a A-colouring of

H - G - e such that n(xy) = A. By VAL, y and z are major vertices. Let

N(y) = {x,y1,...,YA-1} N(z) = {x,zl,...,zA-1}.

If z e N(y), we let z = yA-1. We may assume that n(yyi) - i, n(zzi)

i, i = 1,...,A-1.

Now let wi be the minor vertex adjacent to yi (it may be possible

that wj = wi for some j # i) and let ui be the other vertex adjacent to

wi. Certainly z # ui for any i = 1,...,A-1. Let n(yiwi) = ji

Now for each i = 1,...,A-1 let Ci be the (A,1), -chain having origin

x. By the Kempe-chain argument, the terminus of Ci must be z.

Suppose jl - A. By the Kempe-chain argument on Cl, we will get a

contradiction unless n(w1ul) - 1.

Suppose jl # A. We can assume that n(w1ul) # A. (If n(w1u1) = A,

we interchange the colours A and k (¢ 1, j1, A) in the (A,k)n chain

having origin wl, and we get a new A-colouring A of H such that

A(wlul) # A.) Then by the Kempe-chain argument on Cj1, it is clear that

x

Figure 2.15
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yl, wl ¢ Cjl. We now interchange the colours in Cj1. If n(wlul) = 1 # 1,

let Q be the (jl,l)-chain having origin x in this new colouring of H.

Then the terminus of Q must be wl. By the Kempe-chain argument, this

yields a contradiction. Hence n(wlul) = 1 (see Fig. 2.15).

We have thus proved that n(wlul) = 1 for any o-colouring n of H.

Similarly, n(wiui) = i, i = 2,...,t - 1 for any ti-colouring r of H.

Finally, we consider the following cases.

Case 1. jl # o or t - 1.

In this case, the terminus of the (1,A),,-chain C having origin w1

cannot be yl. Interchanging the colours in C we yield a contradiction

to what we have proved above. Hence this case cannot occur.

Case 2. jl =AorA-1.
In this case, for each i = 2,...,A-2, let Ci be the (l,i)n-chain

having origin w1. By the Kempe-chain argument, the terminus of Ci must

be yl. Hence y, yi e Ci. If wi ¢ Ci, then after interchanging the

colours in Ci, yyi and wiui will receive distinct colours in this new

colouring of H which has been shown impossible above. Hence wi a Ci and

ui e Ci also. Thus n(yiwi) - 1 for each i - 2,...,6-2. Now consider

the (2,3),-chain having origin w2. By a similar argument, n(y3w3) = 2,

which yields a contradiction.

From the proof of Theorem 5.5, we also have

'theorem 5.6 If G is a 4-critical graph such that n4 = 2n2 and n3 = 0,

then for each vertex x of valency 2 in G, the two vertices adjacent to x

must be adjacent.

The result of Theorem 5.5 is not true for G = 3. In fact, the graph

given in Ex.2.3(4) (see Fig.2.3) is 3-critical and is such that n3 = 2n2.

Next, we apply Theorem 5.5, together with the proof of Theorem 5.3,

to prove the following theorem (Yap [81b]).
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Theorem 5.7 Let G be a A-critical graph of order n and size m.

(i) If A = 5, then m > 2n + 1.

(ii If A = 6, then m )- 4 (9n + 1).

(iii) If A = 7, then m > 5 n.

Proof. Since the proofs of all the three parts are nearly identical, we

prove only (i) here and leave (ii) and (iii) as exercises.

Let r be the number of vertices of valency 3 in G each of which is

adjacent to a vertex of valency 4.

Similar to the proof of Theorem 5.3, we have

n5 > 2n2 +

2

{3(n3 - r) + 2r} +

3

n4, r < min In 3 ,n4}

2n2 + n3 +

3

n4 + 2 (n3 - r).

Hence

2m = 2n2+3n3+4n4+5n5>4(n2+n3+n4+ n5)+2 (n3 -r)+3n4
which implies that

m > 2n + . (n3 - r) +
-7

n4.

If either n3 or n4 is not 0, then m > 2n + 1. If n3 = n4 = 0, then

by Theorem 5.5, m > 2n + 1.

Vizing [681 made the following conjecture.

Vizing's conjecture on the lower bound for the size of critical graphs

Every A-critical graph of order n has size m > 2 (nA - n + 3).

Corollary 5.4, together with the results of Ex.2.4(2), 2.4(3),

2.6(3) and Theorem 6.9 verify Vizing's conjecture for A < 4. The

results of Theorem 5.7 are very close to the bounds given in Vizing's

conjecture for A = 5 and 6.

Exercise 2.5

1. Prove that if G is a A-critical graph, then
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e(G) > $ (3A2 + 6A - 1) (Vizing [65b]).

2. Prove part (ii) and part (iii) of Theorem 5.7.

3. Assuming that Vizing's conjecture is true, prove that every planar

graph G having A(G) >

Wilson [77;p.91]).

7 is necessarily of class 1 (Fiorini and

4. Prove that there are no 3-critical graphs of order 8 and 10.

5': Let 1 < r < n. Let G be a graph of order 2n + 1 and A(G) =

2n + 1 - r. Prove that G is of class 2 if and only if for some s

such that 0 < s < (r-1)/2 and for some set {vl, v2, ..., v2s} c

V(G), e(G - vl - ... - v2s) >
(2n+2I-2s)

- (r - 2s)(n - s) (Chetwynd

and Hilton [84a]).

(For r = 1, this conjecture was proved by Plantholt [81]. For

r = 2, this conjecture was proved by Chetwynd and Hilton [84a].)

6. Suppose G is a graph of order 2n having r major vertices. Prove

that if 6(G) > n +

2

r - 2, then G is of class 1 (Chetwynd and

Hilton [-b]).

6. Critical graphs of small order

In this section, we shall find all the critical graphs of order at

most 8. We need the following definition. An almost 1-factor of a

graph C of odd order n is a set consisting of -1 (n - 3) independent

edges of G.

Theorems 6.1 to 6.5 are due to Yap [81b]. We shall apply these

general results later in this section.

Theorem 6.1 Let G be a A-critical graph of order n = A + 1 with minimum

valency 6. If x is a vertex of valency 6 in G and x is adjacent to r

major vertices, then 6 + r > A + 2.

Proof. By VAL, we have nA > A - 6 + 2. Now n = A + 1 implies that

r=nA > A-6+2. Hence 6 + r > A+2.
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Corollary 6.2 If G is a A-critical graph of order n = A + 1 with

minimum valency 6, then 6 > 2 (A + 2).

Theorem 6.3 For each odd integer A > 3, there is exactly one A-critical

graph of order n = A + 2 with minimum valency 2, namely, the graph

obtained from KA+1 by inserting a new vertex into an edge.

Proof. Suppose such a A-critical graph G exists. By VAL, nA > n - 2.

By Ex.2.3(1), nA # n - 2. Hence nA = n - 1 and G is obtained from KA+1

by inserting a new vertex into an edge, which by Theroem 4.4, is

A-critical.

Theorem 6.4 For each even integer A > 4, the graph G obtained from KA+1

by deleting an almost 1-factor is the only A-critical graph of order

n - A + 1 with minimum valency 6 = A - 1.

Proof. Suppose G is a A-critical graph of odd order n A + 1 with

minimum valency 6 = A - 1. By Theorem 5.1, e(G) < 2 (n - 1)A + 1. Let

62rAn-2r be the valency-list of G. Then

e(G) {2r(A - 1) + (n - 2r)A} _ (A2 + A - 2r).

Hence A - 2r < 2 and so nA = n - 2r = (A + 1) - 2r < 3. However, by

VAL, nA > 3. Combining these two inequalities, we have nA = 3 and

A - 2r = 2. Since the valency-list of G has been shown to be 6n-3A3, G

is obtained from KA+1 by deleting an almost 1-factor.

Conversely, if G is obtained from KA+1 by deleting an almost

1-factor, then e(G) > A[Z] and G is of class 2. If G is not critical,

then G has a A-critical subgraph H of size less than

2

A2 + 1. By VAL,

3 > A - 6(H) + 2. Hence 6(H) = A - 1. It is clear that IHI = IGI =

A + 1. But we have proved that the size of such a critical graph

is 2 A2 + 1 which yields a contradiction. Hence G is critical.

Theorem 6.5. For each odd integer A > 3, the only possible valency-list

of a A-critical graph G of order n = A + 2 with minimum valency 6 = A - 1

is 6n-4A4.
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Proof. By VAL, nA > 3. Since A is odd and 6 is even, nA > 4. Now by

Theorem 5.1,

e(G) < 2 (n - 1)A + 1 = 1 (A + 1)A + I.

Suppose the valency-list of C is 6n-2rA2r, r > 2. Then

e(G) =

2

{(n - 2r)(A - 1) + 2rA} = 2 (A2 + A + 2r - 2).

Hence r = 2 and the only possible valency-list of G is bn-4A4.

In the subsequent discussions, we need the following facts and

definitions :

(1) From the fact that Cn, n odd, are the only 2-critical graphs and

that there are no regular A-critical graphs for A > 3 (Corollary 5.2),

it follows that if G is a A-critical graph having minimum valency 6,

then 2 < 6 < A.

(2) To show that a certain graph G is A-critical, sometimes we proceed

as follows : we first show that G is of class 2 and contains no proper

A-critical subgraph where A = A(G). An argument of this kind will be

called a critical-list argument.

(3) The graph obtained from K4 by inserting a new vertex into an edge

will be denoted by G1.

We now apply the above results to prove Theorems 6.6 and 6.7.

Theorem 6.6 C5, G1 and K5 - e where e is an edge of K5, are the only

three critical graphs of order 5.

Proof. Suppose G is a A-critical graph of order 5 with minimum valency

6. If A = 2, it is obvious that G = C5. If A = 3, by Theorem 6.3,

G = G1. If A = 4, by Corollary 6.2, 6 > 3. Hence, by Corollary 5.2,

6 = 3. Finally, by Theorem 6.4, G = K5 - e.

Theorem 6.7 There are no critical graphs of order 4 and 6.

Proof. Suppose such a critical graph G exists. It is obvious that

A = A(G) # 2. Hence we need only to consider the case that A > 3.
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Suppose IGI = 4. Then 3 < X'(G) < x'(K4) = 3. Hence G cannot be

critical.

Suppose IGI = 6. If A(G) = 3, then the only possible valency-list

of G is 2234 which, by Ex.2.3.(1), is impossible. If A(G) = 4, then

applying VAL, we know that the possible valency-lists of G are 245 and

3244. However, by Theorem 5.1, the graphs having valency-lists 245 and

3244 cannot be critical. If A(G) = 5, then 5 < X'(G) < X'(K6) = 5.

Hence G cannot be critical. //

We shall apply the following lemma to prove Theorem 6.9.

Lemma 6.8 If G is a A-critical graph of odd order and F is a 1-factor

of G - x where x is a minor vertex of G, then G - F has a (6-1)-critical

subgraph H.

Proof. X'(G - F) = A, otherwise any (A-1)-colouring of G - F can be

extended to a A-colouring of G. By the choice of x, A(G - F) = A - 1.

Hence G - F is of class 2. Lemma 6.8 now follows from Theorem 3.3.

Theorem 6.9 (Beineke and Fiorini (761) A 2-connected graph of order 7

is critical if and only if its valency-list is 27, 236, 246, 3245, 256,

3455, 4354, 45264 or 5463.

Proof. Let G be a A-critical graph of order 7, size m and having

minimum valency 6. By Theorem 3.2, G must be 2-connected. It should be

clear by now that we need only to consider the cases that A > 3 and

2 < 6 < A = 6.

A - 3 : By Fiorini's inequality, n3 > 2n2. Hence, the possible valency-

list of G is 236. Now suppose G' is a graph having valency-list 236.

Then by Theorem 2.6, G' is of class 2. If G' is not critical, then by

Theorem 3.3, G' contains a 3-critical subgraph H. By Theorem 6.7,

IHI # 4,6. Hence IHI = 5. However, if IHI = 5, then H = G1. But GL

cannot be extended to a graph having valency-list 236. (This argument

is the so-called critical-list argument defined earlier.)

A - 4 : Suppose 6 = 2. By VAL and Fiorini's inequality, n4 >

max {4, 2n2 + n3}. Hence the possible valency-lists of G are 246, 2245,

and 23244. By Ex.2.3(1), 2245 is out. Applying VAL, we can see that
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the only possible 4-critical graph having valency-list 23244 is the

graph shown in Fig.2.16. However, this graph is 4-colourable. That

1 4

2 C

/ \ /4
4 1

Figure 2.16

every graph having valency-list 246 is critical follows by a critical-

list argument. Suppose 6 = 3. By Fiorini's inequality, n4 > n3. Hence

3245 is the only possible valency-list of G. That every graph having

valency-list 3245 is critical follows by a cri.tical-list argument.

A - 5 : Theorem 6.3 settles the case 6 = 2. Suppose 6 = 3. By now it

should be easy to see that the possible valency-lists of G are 32454 and

3455. Suppose G is a graph having valency-list 32454. Let x be a

vertex of valency 3. Since X'(G - x) = 5 and e(G - x) = 12, G - x has a

1-factor F. Thus, by Lemma 6.8, G - F has a 4-critical subgraph H. It

is clear that IHI # 4,6,7. Hence H = K5 - e. Let {vl,v2} = V(G) - V(H)

and let B be the set of edges of G joining {vl,v2} and V(H). It is

clear that e ¢ E(G). Thus F B, which is impossible. That a graph

having valency-list 3455 is critical follows from a critical-list

argument. The case that 6 = 4 follows from Theorem 6.5 and a critical-

list argument.

A = 6 : By Corollary 6.2, 6 > 4. Suppose 6 = 4. Then by VAL, n6 > 4.

Hence the possible valency-lists of G are 4364, 45264, 4265 and 466.

The valency-lists 466 and 4265 are not realizable. If G is a graph

having valency-list 4364, then G = K7 - E(K3) which is 6-colourable.

That every graph having valency-list 45264 is critical follows by a

critical-list argument. Finally, for the case 6 = 5, we apply

Theorem 6.4.

Fig.2.17 gives all the 4-critical graphs G of order 7 for A > 3,

except for the three graphs having valency-lists 256, 5463 and 45264.

We may verify that all the graphs are non-isomorphic (for A > 4) by
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considering their complements.

3245:

3455:

4354:

I

Figure 2.17

(Note that by Theorem 6.3, the graph obtained from K6 by inserting
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a new vertex into an edge is the only critical graph having valency-list

256; by Theorem 6.4, the graph obtained from K7 by deleting an almost

1-factor is the only graph having valency-list 5463; and it is clear

that the graph obtained from K7 by deleting two non-independent edges is

the only graph having valency-list 45264.)

Exercise 2.6

1. Prove that if G is a o-critical graph of even order, then G has at

least three minor vertices (Broere and Mynhardt [791).

2. Applying Tutte's theorem on 1-factors, or otherwise, prove that if G

is a critical graph of order 8 or 10, then G contains a 1-factor

(Beineke and Fiorini [76]).

3. Prove that there are no critical graphs of order 8 (Beineke and

Fiorini [76]).

4t Prove that there are no critical graphs of order 10 (Beineke and

Fiorini [76]).

5. Prove that there are no 3-critical graphs of order 12 (Fiorini and

Wilson [77;p.102]).

6': Does there exist a critical graph of even order n where 12 < n < 16?

7t Determine all 3-critical graphs of order 9 (Jakobsen [74]).

8t Prove that a 2-connected graph of order 9 having maximum valency

A > 4 is critical if and only if its valency-list is one of the

following : 248, 3247 (except one graph), 258, 3457, 4356, 268,

3567, 4267, 45266, 5465, 278, 3677, 4577, 46276, 52676, 56375, 6574,

57385, 6386, 627285, 67484 and 7683 (Chetwynd and Yap [83]).

7. Planar graphs

In this section, we shall prove a result of Vizing (Theorem 7.1)

and mention a long standing conjecture of Vizing [6Sb] concerning edge-

colourings of planar graphs. The proof of Theorem 7.1 given below is

due to Yap [81b]. It is a modification of a proof given by Mel'nikov

[701.
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Theorem 7.1 Every planar graph whose maximum valency is at least 8 is

necessarily of class 1.

Proof. Suppose G is a planar graph of class 2 having A(G) > 8. Then G

contains an 8-critical subgraph. Hence, without loss of generality, we

may assume that G is 8-critical.

From Euler's polyhedral formula, we have

e(G) < 3IGI - 6,

from which we can derive

12 + n7 + 2n8 < 4n2 + 3n3 + 2n4 + n5 (1)

By VAL, a vertex of valency 3 is adjacent to at most one vertex of

valency 7 (and is adjacent to no vertex of valency less than 7), a

vertex of valency 4 is adjacent to at most one vertex of valency 6, and

at most two vertices of valency 7. Let r be the number of vertices of

valency 3 each of which is adjacent to a vertex of valency 7, let s be

the number of vertices of valency 4 each of which is adjacent to a

vertex of valency 6, let t be the number of vertices of valency 4 each

of which is adjacent to exactly one vertex of valency 7, and let u be

the number of vertices of valency 4 each of which is adjacent to exactly

two vertices of valency 7.

Using the proof technique of Theorem 5.3, we have

n8 > 2n2 +

2
{3(n3 - r) + 2r} +

3

{4(n4 - s - t - u) + 3s + 3t + 2u}

+Z n 5 +sn 6 + 3 n7

where r < min {n3,n7}, s < min {n4,n6}, t < min {n4 - s, n7} and

u < min {n4 - s - t, n7 - r}. Hence

n7+2n8>4n2+3n3+2n4+n5+(n7 -r-u)+3 (n4-s-t)

+3 (n7 - u) > 4n2+3n3+2n4+n59

which contradicts (1).

There exist planar graphs G with maximum valency A = 2,3,4,5 which
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are either of class 1 or of class 2. Vizing [65a] made the following

conjecture.

Planar Graph Conjecture. If G is a planar graph whose maximum valency

is at least 6, then G is of class 1.

The following theorems (Yap [81b]) show that if a 7-critical or

6-critical planar graph G exists, then G has quite a few minor

vertices. These results may be of some use in settling the Planar Graph

Conjecture.

Theorem 7.2 If a 7-critical planar graph G exists, then

2n3 + 4 n4 + 1 n5 > 12 + 2 n6 and n7 > 6 + 2n2 + n5 +
5

n6.

Proof. Let S be the set of all vertices of valency 2 in G. Let mj be

the number of vertices of valency j in G - S. From Euler's polyhedral

formula, we can derive

4m2 + 3m3 + 2m4 + m5 > 12 + m7 (2)

By VAL, m2 = 0, mj = nj, j = 3,4,5 and m7 + 2n2 = n7. Hence (2) becomes

2n2 + 3n3 + 2n4 + n5 > 12 + n7 .

Now applying Fiorini's inequality n7 > 2n2 + n3 +

3

n4 +

2

n5 +

5 -6w e have 2n3 +

3

n4 +

2

n5 > 12 +

S

n6 and n7 > 6 + 2n2 +

.n 5 +5n6

Corollary 7.3 If a 7-critical planar graph G exists, then

n3 + n4 + n5 > 6 and n7 > 6 + 2n2.

Theorem 7.4 If a 6-critical planar graph G exists, then

2n2 + 3n3 + 2n4 + n5 > 12 and n6 > 4 + . n2 +
S

n5.

The proof of this theorem is similar to that of Theorem 7.2 and

thus is left as an exercise.
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Exercise 2.7

1. Prove Theorem 7.4.

2. A planar graph G is outerplanar if it can be embedded in the plane

in such a way that G has no crossings and that all its vertices lie

on the boundary of the same face. Prove that an outerplanar graph

is of class 1 if and only if it is not a cycle of odd length. (This

result is due to C. McDiarmid, see Fiorini and Wilson [77;p.109].)

8. 1-factorization of regular graphs of high degree

A regular graph of even order is said to be 1-factorizable if its

edge-set is the union of 1-factors. The following well-known conjecture

probably was made independently by many people.

1-Factorization Conjecture If a regular graph G of order 2n has degree

deg G > 2[] - 1, then G is 1-factorizable.

It is clear that if G is of even order, then G is 1-factorizable if

and only if G is of class 1. Thus Theorem 1.2 verifies that this

conjecture is true for deg G - 2n - 1. If deg G - 2n - 2, then G is

obtained from K2n by deleting a 1-factor. However, it is clear that any

1-factor in K2n can be chosen as a colour class in a (2n-1)-colouring of

K2n. Thus this conjecture is also true for deg G = 2n - 2.

The result of Ex.2.8(1) shows that if this conjecture is true then

n+l ] - 1 is best possible.the lower bound 2[

Rosa and Wallis [82] proved this conjecture for the case deg G =

2n - 4 under the assumption that G is also 1-factorizable. Chetwynd and

Hilton [85] proved this conjecture for deg G > 2n - 5. As their proof

for the case that deg G - 2n - 5 is complicated, we shall only reproduce

their proof here for the case that deg G > 2n - 4 and leave the proof

for the case that deg G - 2n - 5 as an exercise.

We shall require the following lemmas.

Lemma 8.1 Suppose G is a regular graph of order 2n and G ¢ K2n. Then G

is of class 1 if and only if for any w e V(G), G - w is of class 1.
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Proof. Necessity. Since G is regular and G # R2n, A(C - w) = A(G) for

any w c V(G). Hence A(G - w) < x'(G - w) < XI(G) = A(G) = A(G - w),

from which it follows that X'(G - w) = A(G - w) and G - w is of class 1.

Sufficiency. Let A = A(G - w) and let it be a A-colouring of G - w.

If there is a colour, colour i say, which is absent at more than one

vertex in N(w), then there is a colour, colour j say, which is present

at all the vertices in N(w) and thus colour j is present at every vertex

in G - w. But this is impossible because G - w has an odd number of

vertices. Thus each colour is absent from exactly one vertex in N(w)

and it can obviously be extended to a A-colouring of G.

Lemma 8.2 For a graph G, let e = vw a E(G). If w is adjacent to at

most one vertex of valency A(G), then

A(G - e) - A(G) > X'(G - e) = X'(G), and

A(G - w) - A(G) + X'(G - w) = X'(G).

Proof. If G is of class 1, then A(G) - x'(G) > x'(G - e) > A(G - e)

A(G) and thus X'(G) - X'(G - e). Similarly, X'(G - w) a X'(G).

If G is of class 2, then by Theorem 3.3, G contains a A(G)-critical

subgraph G*. Now by VAL, w E V(G*). Thus X'(G - w) = X'(G) and

x'(G - e) - X'(G).

Lemma 8.3 Let G be a graph of order n and let A = A(G) > 3. Suppose G

has three vertices of valency A. Then G is of class 2 if and only if

A = n - 1 and each of the remaining vertices has valency n - 2 (and thus

n is odd).

Proof. Sufficiency. Suppose G has three vertices of valency n - 1 and

each of the remaining vertices has valency n - 2. Then 2e(G) =3(n - 1)

+ (n - 3)(n - 2) = n(n - 2) + 3, from which it follows that n is odd.

Hence e(G) > A[2J and by Theorem 2.6, G is of class 2.

Necessity. Suppose G has three major vertices (a,b and c say) and

is of class 2. Since A > 3, n > 5. By Theorem 3.3, G contains a

A-critical subgraph G*. Since there are no regular A-critical graphs
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for A > 3 (see Ex.2.4(4)), by VAL, G* has the same three major vertices

a, b and c, and 6(G*) > A - 1. Thus 6(G*) = A - 1, G* = G and n is

odd. Now for n < 9, the necessity is true (this follows from

Theorems 6.6, 6.9 and Ex.2.6(7) and 2.6(8)). Hence we assume n > 11.

By Theorem 5.3, A>2nandthus forn> 11, 6(G-a-b) > A - 3
>

3

n - 3 > 2 (n - 2). Consequently, by Dirac's theorem, G - a - b has

a Hamilton circuit. Now if A < n - 1, then G has a vertex d N(a) such

that G has a near 1-factor F (a near 1-factor of a graph G of odd order

n is a set of 2 (n - 1) independent edges of G) which contains the edge

ab but does not include any edge incident with d. Thus G - F has four

vertices a, b, c, d of maximum valency A - 1, joined as illustrated in

Fig.2.18.

Figure 2.18

Since a is adjacent to only one vertex of maximum valency A - 1 in

G -F and A(G - F - ac) = A(G - F), by Lemma 8.2, C - F and G - F - ac

are of the same class. However, since G - F - ac has only two vertices

of maximum valency, G - F - ac is of class 1. Hence G is of class 1.

This contradiction proves the necessity.

Theorem 8.4 Suppose G is a regular graph of order 2n and deg G = 2n - 3

or 2n - 4. Let deg G > 2 [n21] - 1 . Then G is 1-factorizable.

Proof. Suppose deg G - 2n - 3. Let w c V(G). Then the graph G - w has

only two major vertices and thus by VAL, G - w is of class I. Hence, by

Lemma 8.1, G is 1-factorizable.

Suppose deg G = 2n - 4. Clearly deg G = 2n - 4 > 2 [2211 - 1

implies that n > 4. Thus for any w e V(G), G - w has three vertices of

valency A(G) > 4. Now by Lemma 8.3, G - w is of class 1 and thus by

Lemma 8.1, G is 1-factorizable. //
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Exercise 2.8

1. Let G be the graph obtained from two copies of K2m+1, where m > 2,

by deleting one edge (say albl and a2b2) from each, and joining them

by the two edges ala2 and blb2. Prove that G is of class 2

(Chetwynd and Hilton [85]).

2 Suppose G is a regular graph of order 2n and deg G = 2n - 5 >

2 [n21] - 1. Prove that G is 1-factorizable (Chetwynd and

Hilton [85] and [-c]).

3t Prove that the 1-Factorization Conjecture is true for deg G

>

-

IV(G)I (Chetwynd and Hilton [85]).

4. We define the graph Gn as follows. The vertex set of Gn is the

symmetric group En on {1,2,...,n). Two vertices 6, T in Gn are

adjacent if and only if 6-1T has exactly one nontrivial cycle. Then

Gn is a Cayley graph (see Chapter 3). Prove that Gn is

1-factorizable (Brualdi [78]).

5* Let 1 < r < n and let G be a graph of order 2n + 2 with A(G) =

2n + 1 - r. Prove that G is of class 2 if and only if for some s

such that 0 < s < (r-1)/2 and for some set {vl, v2, ..., v2s+1}

V(G), e(G - v1 - ... - v2s+l) >
(2n+1-2s)

- (r - 2s)(n - s)
2

(Chetwynd and Hilton [84b]).

(For r = 1, this conjecture was proved by Plantholt [83]. For

r = 2, this conjecture was proved by Chetwynd and Hilton [84b].)

6* The Odd Graph Conjecture For each integer k > 2, the odd graph 0k

is the graph obtained by taking as vertices each of the (k-1)-

subsets of {1, 2, ..., 2k - 11, and joining two of these vertices

with an edge whenever the corresponding subsets are disjoint. Thus

all odd graphs are regular. Prove that 0k is of class 1 unless

k = 3 or k = 2r for some integer r (Fiorini and Wilson [77;p.45]).

7t Suppose G is a graph having four major vertices. Prove that G is of

class 2 if and only if for some integer n, one of the following

holds :

(i) the valency-list of G is (2n - 2)2n-3(2n - 1)4;

(ii) the valency-list of G is (2n - 2)(2n - 1)2n-4(2n)4;
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(iii) G contains a bridge e such that C - e is the union of two

graphs G1 and G2 where A(G1) < 2m - 1 for some integer m < n

and the valency-list of G2 is either (2m - 2)(2m - 1)2m-4

(2m)4 or (2m - 1)2m-2(2m)3 (Chetwynd and Hilton [85]).

8. Suppose G is a regular graph of even order. Prove that if C is of

class 1, then the line graph of G is also of class 1 (Jaeger [73]).

9. Applications to vertex-colourings

Several applications of edge-colourings to electrical networks,

scheduling problems, constructions of latin squares etc., can be found

in many existing books on graph theory. In this section, we shall

present some recent results on nontrivial applications of the theory of

edge-colourings to find a very sharp upper bound for the chromatic

number X(G) of graphs G that do not induce K1,3 or K5 - e (the complete

graph K5 minus an edge). These results are due to S. A. Choudum, M.

Javdekar, H. A. Kierstead and J. Schmerl.

It can be easily shown that for any graph G, X(G) < A(G) + 1.

R. L. Brooks (1941) strengthened this result by showing that for any

connected graph G which is neither an odd cycle nor a complete graph,

X(G) < A(G). The upper bound for X(G) obtained by Brooks' is not sharp,

for instance, X(Kl,n) = 2 whereas A(K1,n) - n; for any planar graph G,

X(G) < 4 while A(G) can be arbitrarily large. Other upper bounds for

x(G) are also known, but they are also not sharp enough.

Given a graph C, we denote its density (clique number), the maximum

number of vertices in a clique, by w(G). Suppose n is a proper vertex-

colouring of G. Let Gi1i be the subgraph of G induced by the vertices

coloured with colours i and j. A vertex u such that n(u) = k is called

a k-vertex. We shall follow the convention that if H = <ul,u2,u3,u4> =

K1,3, then dH(ul) = 3 and dH(ui) = I for i ) 2.

Let L(G) be the line graph of a graph G. It is easy to see that

x'(G) = x(L(G)) and if G # K3, A(G) = w(L(G)). In view of these facts

and a theorem of Beineke [68] characterizing line graphs in terms of

nine forbidden subgraphs (see Fig.2.19), the following result follows as

a consequence of Vizing's theorem : If a graph G does not induce any of
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the nine graphs in Fig.2.19, then w(G) < X(G) < w(C) + 1.

Figure 2.19

Choudum [76] showed that the conclusion of the above result is true

for a wider class of graphs, namely, if G does not induce G1, C2, G3 and

G4 or if G does not induce GI, G2, G5 and G6, then w(G) < X(G) c

w(G) + 1. Javdekar [80] improved Choudum's results by eliminating G3

and G5 from the hypothesis. He further conjectured that if a graph G

does not induce CI and G2, then w(G) < x(G) t w(G) + 1. Kierstead and

Schmerl [83] proved that Javdekar's conjecture is true for graphs G with

w(G) < 9. They also showed that if G does not induce any of the graphs

G1, G2 or all of G4, G5 and G9, then w(G) < X(G) < w(G) + 1. Kierstead

[84] has now proved Javdekar's conjecture.

To prove Javdekar's conjecture, we need the following lemma (due to

Choudum [77]) :

Lemma 9.1 If a graph G does not induce KI
3
and A(G) < 5, then

X(G) < w(G) + 1.

Proof. We need only to consider the case that G is connected. Let A =

A(G). Clearly this lemma is true if A < 2. We first note that for
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A ) 3, since G is claw-free, i.e. G does not induce K1,31 w(G) ? 3.

Suppose A = 3. Then 3 < w(G) < 4. If w(G) = 4, then G = K4 and

X(G) = 4. Otherwise, if w(G) = 3, then x(G) < A + 1 = w(G) + 1.

Suppose A = 4. Then 3 < w(G) < 5. By the foregoing argument, we

need only to consider the case that w(G) < 4. Now applying Brooks'

theorem, we have X(G) < A < w(G) + 1.

Suppose A = 5. By the foregoing argument, we need only to consider

the case w(G) = 3. If the result is false, let G be a graph of minimum

order satisfying the hypothesis of the lemma and such that A(G) = 5,

w(G) = 3 and X(G) = 5. We note that for any vertex u having valency 5,

<N(u)> = C5 because G is claw-free K1,3 and w(G) = 3. Let v be a vertex

of valency 5 and let N(v) = {v1,v2,v3,v4,v5} where vl, v2, v3, v4 and v5

form a 5-cycle in this order. By the assumption, for any 4-colouring n

of G - v, the number of colours used to colour the vertices v1, ..., v5

must be exactly 4. Hence we may assume that n(vl) = lr(v3) = 1, n(v2) _

2, a(v4) = 3 and a(v5) = 4. Now in G - v, there exist two paths

P(v2,v4) and P(v2,v5) in G2,3 and G2,4 respectively; otherwise by

interchanging the colours of a component, as in the proof of the well-

known 5-Colour Theorem, we get a 3-colouring of <N(v)>, a contradiction.

Let v6 e P(v2,v4) and v7 e P(v2,v5) be the vertices coloured with colour

2 and adjacent to v4 and v5 respectively. (We shall later consider the

cases that v7 # v6 and v7 = v6 separately.) Let v8 and v9 be the other

two vertices adjacent to v2. Then {71(v8),11(v9)} = {3,4}. We assume

that the 5-cycle induced by N(v2) is in the order v9, v3, v, vl.

Case 1. v7 # v6.

First suppose n(v8) = 4 and a(v9) = 3 (see Fig.2.20). Now either

Figure 2.20
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v6v3 e G or v6v5 e G (otherwise <v4,v3,v5,v6> = K1,3). If v6v5 e G,

then <v5,v,v6,v7> = K133. Hence v6v3 a G. Similarly v7v1 e G. Now

d(vl) = 5 = d(v3) and there is no 4-vertex in the neighbourhood of v3.

Hence, after recolouring v3 with colour 4, we get a 3-colouring of N(v),

a contradiction.

Next suppose 1T(v8) = 3 and ii(v9) = 4 (see Fig.2.21). As above,

(v8.3)

(v9.4)

Figure 2.21

v6v3 e G and v7vl e G. Consequently v6v9, v7v8 a G. But then

<v2,v9,v6> is a subpath of P(v2,v5) in G2,4
because for any colour k,

there are at most two k-vertices
adjacent to a vertex (otherwise G has

an induced K1,3). Hence there is a 4-vertex, v10 say, adjacent to v6

Since w(G) = 3, v4v9 0 G and so v10v4 e G (otherwise <v6,v9,v4,v10>

K1,3). Now <v4,v3,v5,v10> = K1331 a contradiction.

Case 2. v7 - v6

This case can be settled in a similar way. We shall leave it as an

exercise.

Let M be a multigraph. A triangle with a multiple edge in M is

called a 4-sided triangle in M. Let G be a graph and v e V(G). The

closed neighbourhood N[v] of v is N(v) U {v}.

Kierstead and Schmerl [83] proved that the following two assertions

are equivalent.

G(n) :
If G is a graph that does not induce K13 3 or K5 - e and

w(G) t n, they, X(G) 4 n + 1.
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M(n) : If M is a multigraph such that A(M) < n, p(M) < 2 and M

does not contain a 4-sided triangle, then x'(M) < n + 1.

To prove that G(n) and M(n) are equivalent, we shall require part

of Corollary 3.5 which we now restate it as Lemma 9.2 below.

Lemma 9.2 If M is a chromatic-index-critical multigraph such that

q = x'(M) > A(M) + 1, then every vertex v of M is adjacent to at least

two vertices x such that d(x) + o(v,x) = q.

We also need the following lemma which is a special case of a well-

known theorem of Ramsey. (The proof for this lemma is easy and is left

as an exercise.)

Lemma 9.3 If G is a graph of order n > 6, then G contains either K3

or 03.

We now prove

Theorem 9.4 (Kierstead and Schmerl [83]) For every positive integer

n, G(n) holds if and only if M(n) holds.

Proof. We shall apply the following three lemmas to prove this

theorem. Lemma 9.5 states that both G(n) and M(n) hold for n < 3.

We now prove that for n > 3, G(n) implies M(n). Let M be a

multigraph satisfying the hypothesis of M(n) and let G be the line graph

of M. By Lemma 9.6, G satisfies the hypothesis of G(n) and thus x(G) <

n + 1. Consequently XI(M) = x(G) < n + 1 and M(n) holds.

Finally, Lemma 9.7 shows that for n > 4, if a graph G is a counter-

example to G(n), then there exists a multigraph M which is a counter-

example to M(n). Hence M(n) implies G(n).

Lemma 9.5 If n < 3, then both G(n) and M(n) are true.

Proof. Suppose M is a multigraph with A(M) < n < 3. Then by Shannon's
3 3A] < [y n] < n + 1. Hence, for n < 3, M(n) is truetheorem, x'(M) < [T

(even if M contains a 4-sided triangle).

Suppose G is a graph that does not induce K1 3 and w(G) < n < 3.

It is clear that for n < 2, x(G) < 3. Suppose n = 3. If A(G) > 6, let
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v e C be such that d(v) > 6 and let H - <N(v)>. By Lemma 9.3, either H

contains K3 and thus w(G) > 4 or H contains 03 and thus G induces

K1,3. Hence 0(G) < 5 and this lemma follows from Lemma 9.1.

In general if M is a multigraph and G is the line graph of M, then

G does not induce K1 3 and w(G) = A(M). Furthermore, if u(M) < 2, then

G does not induce K5 - e. Hence we have the following lemma in which

only the condition that u(M) < 2 is required and for which C does not

induce K1,3 is always true.

Lemma 9.6 If M is a multigraph such that t(M) > 3, u(M) < 2, and M has

no 4-sided triangles, then the line graph G of M does not induce K13 3 or

K5 - e and w(G) = A(M).

Next we prove

Lemma 9.7 If G = (V,E) is a chromatic-critical graph such that G does

not induce K1,3 or K5 - e, w(G) > 4, and X(G) > w(G) + 2, then G is the

line graph of a multigraph M such that A(M) = w(G), u(M) < 2, and M does

not contain a 4-sided triangle.

Proof. Let M = (W,F) where

W = {X - V I X is a clique and for some clique Y in G, x fl Y #

min {IX - YI,IY - XI} > 2 and max {IXI,IYI} > 4 } and

F= {XYv I X, Y e W, X# Y, and v e x n Y}
(Here XYv denotes the edge joining X and Y which is labelled by v.)

Let 4 : F + V be defined by 4(XYv) = v. We shall now prove that G

is the line graph of M by showing that 4' is bijective and that two edges

in M are adjacent if and only if their images are adjacent in G. First

we establish some useful assertions about C.

(Al) If K is a clique and v J K, then IN(v) fl KI < 2.

Suppose IN(v) (1 KI > 3. Since v t K, there exists k c K such that vk

E. Let A e N(v) fi K be such that IAI = 3, then <A U {v,k}> = K5 - e, a

contradiction. Hence IN(v) fl KI < 2.

(A2) If K and K' are distinct cliques in G, then IK fl K'I < 2.

Since K' # K, there exist v e K' and k e K where vk t E. If
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IK n K'I > 3, let A e K U K' be such that JAI = 3. Then <A U {v,k}> =

K5 - e, a contradiction.

(A3) If K is a clique in G, IKI > 4, and k e K, then

<(N(k) - K) U {k}> is a complete subgraph.

Suppose not. Then for some v1, v2 a N(k) - K, vlv2 ¢ E. By (Al),

each vi is adjacent to at most one vertex in K - {k}. Thus there exists

at least one y in K such that vly, v2y ¢ E and <k,vl,v2,y> = K1,3, a

contradiction.

(A4) If X and Y are distinct cliques in G, v e x n Y, and IXI, IYI > 4,

then N[v] = X U Y.

Suppose not. Let w c N[v] - (X U Y). By (A2), IX n YI < 2. Thus

IX - YI > 2. Using (Al), it is possible to choose x e X- Y such that

wx E. But then x, w e N(v) - Y, contradicting (A3) because IYI > 4.

(A5) 6(G) > 5. If 6(G) - 5, then w(G) = 4.

It is clear that for each v e V, X(G - v) > w(G) + 1 > 5. Now if

d(v) < 4, then each q-colouring of C - v where q > 5, can be extended to

a q-colouring of G, contradicting the assumption that G is chromatic

critical. Hence d(v) > 5. The above argument also shows that if d(v) _

5, then w(G) = 4.

(A6) For each v e V, there exists a clique K such that v e K and

IKI >4.

By (A5), for each v e V, d(v) > 5. Suppose d(v) > 6. Then by

Lemma 9.3, there exists A e N(v) such that <{v} U A> = K1,3 or <{v} U A>

= K4. Since G does not induce K1,3, we have v c K for some clique K

such that IKI > 4. Suppose d(v) = 5. Let w c N(v). If d(w) > 6, then

by the previous argument, there exists a clique K such that w e K and

IKI = 4 (because 6(G) = 5). If v e K, we are done. Otherwise, by (A3),

<(N(w) - K) U {w}> is a clique of order 4 containing v. Hence we may

assume that for each w e N(v), d(w) = 5 and v is not contained in a

clique of order 4. Now since H = <N(v)> does not induce 03 and K3, H =

C5 = <w1,w2,w3,w4,w5> (see Fig.2.22). We shall next obtain a

contradiction by showing that any (x(G) - 1)-colouring of J = G - N[v]

can be extended to a (X(G) - 1)-colouring of G. Since X(G) - 1 > w(G) +

1 = 5, and d(w1) = d(w2) - 5, we may assign the same colour a to wl and
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w3 in a (X(G) - 1)-colouring of J. The other vertices w2, w4 and w5 can

be assigned any of the other colours (except colour a) as long as\
w\

FigureFigure 2.22

adjacent vertices do not receive the same colour. (This is possible

because X(G) - 1 > 5 and each of the vertices w2, w4 and w5 is adjacent

to exactly two vertices in J.) Since H is now coloured with only four

colours, the above (x(G) - 1)-colouring of G - v can be extended to a

(X(G) - 1)-colouring of G, a contradiction.

(A7) For each v e V, there exist distinct X, Y e W such that v e x n Y,

N[v] Ex U '1, IXI >4and IY - XI > 2.

By (A6), there exists a clique X such that v e X and IXI > 4.

Since G is chromatic critical and X(G) > w(G) + 2, IN(v) - XI > 2. By

(A3), (N(v) - X) U {v} is contained in some clique Y. Thus v e X A Y

and N[v] S X U Y. By (A2), IX - YI = IXI - IX fl YI > IXI - 2 > 2.

Clearly IY - XI > IN(v) - XI > 2. Thus X, Y e W.

(A8) Suppose v c x n Y where X and Y are distinct members of W such

that min {IXI, IYI} > 4. If v e K for some other clique K, then

K4W.

By (A4), N[v] = X U Y. By (A2), IK fl XI, IK fl YI < 2. Thus IKI t

3. So X and Y are the only cliques of order at least 4 that certain v.

Also IK - XI, IK - YI < 1. Thus K t W.

(A7) shows that i is onto. We now apply (A8) to show that ' is

one-to-one. For each v s V, if there exist two cliques of order at

least 4 containing v, then we are done by (A8). Suppose this is not the

case. By (A7), there exist cliques X, Y e W such that v e x n Y,

N[v] e X U Y, IXI > 4 and IY - XI > 2. Since IYI < 4 and IY - XI > 2,

we have IYI = 3. Let Y = {v,z0,z1). Suppose K e W is a clique
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different from X and Y containing v. By (A2), IK fl XI, IK (1 YI < 2.

Since K G X U Y, we must have IK n x1 = 2 = IK n YI. Thus IKI = 3. Let

K = {v,xl,zl} where xl a X. Since K is a clique, x1z0 t E. By (A6), zl

is contained in a clique Z of order at least 4. By (A8), v, xl t Z. By

(A3), N(zl) - Z is a complete subgraph. Since x1, z0 a N(zl), xlz0 E E,

and xl E Z, z0 must be in Z. Since v c X - Z and vz0, vzl c E, by (Al),

X n z = (see Fig.2.23).

v--x0 c

X xl U

Figure 2.23

z0

z1
z

Now we show that for any x c X and any z e Z, if xz a E, then

N[x] g X U Z if only if N[z] E- X U Z. Suppose N[z] S X U Z. If y e

N(x), then by (A3), yz c E and thus y e X U Z which implies that N[xJ

X U Z. The converse is proved by symmetry.

Next we notice that since G is chromatic critical and X(G) > w(G) +

2, for any x e X, IN(x) - XI > 2 and for any z e z, IN(z) - ZI > 2.

Thus, by (Al), if N(x) X U Z, IN(x) n ZI = 2 and if N(z) c_ X U Z,

IN(z) n XI = 2. We shall now define two subsets X0 X and Z0 = Z where

for each xi a X0 and each zj c Z0, N[xiJ, N[zjj E- X U Z. We first put x0

= v. Clearly x0 a X0. Then by the above result, z0, zl a Z0 and thus

xl e X0. If z2 e Z is adjacent to xl, then there exists x2 e X which is

adjacent to z2 and thus x2 c X0. We continue this process and

eventually we obtain xk a X0 such that xkzk, xkz0 a E. Then X0 = {x0,

xl,..., xk}, Z0 = {z0, z1,..., zk} (see Fig.2.24).

Z

A i (

Zk

Figure 2.24
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Since G is chromatic critical, there exists a (X(G) - 1)-colouring

it of H = C - (X0 U Z0). We will now obtain a contradiction by extending

it to a (X(G) - 1)-colouring o of G. The only elements of H, for which

the elements of X0 (resp. Z0) are adjacent to, are in X - X0 (resp.

Z - Z0). Let A (resp. B) be the set of colours available for colouring

X0 (resp. ZO). Since X(G) > w(G) + 2, it is a (X(G) - 1)-colouring of H,

and IXI < w(G), we have IAI > (w(G) + 1) - (IXI - IXOI) > IXOI + 1.

Similarly, IBI > IZOI + 1. Let C = A fl B = {y0,..., yq-1}, A - C =

{al,..., ar} and B - C = {Bl,...,Bs}, We now extend it to a by putting

if i < q

if i > q

if i < q - 1

This contradiction completes the proof that t is one-to-one.

We next prove that for any e, e' a F, e and e' are incident in M if

and only if ti(e) and t(e') are adjacent in G. Let e = XYv, e' = XYv,

where X, Y, Y' e W and v, v' a V. Then v and v' are in the same clique

X and 4'(e) = v, i(e') = v'. Since 4 is one-to-one, v # v'. Thus vv' e

E. Conversely, suppose vv' a E. Let ey(e) = v and 4(e') = v'. By (A7),

there exist X, Y r W such that N[v] X U Y and v e x fl Y. Since 4' is

one-to-one, e = XYv. Also, since vv' e E and N[v] S X U Y, we have v' e

X U Y. Without loss of generality, we assume that v' a X. Again, since

4' is one-to-one, by (A7), there exists Y' e W such that e' = XY,,. Thus

e and e' are incident in M.

We have so far proved that G is the line graph of M. By (Al) and

the definition of F, p(M) < 2. The equality A(M) = w(G) follows from

the fact that G is the line graph of M. Finally, if M has a 4-sided

triangle, then there exist distinct X, Y, Z e W and distinct v, v', x,

y c V such that v, v' c x fl Y, x e x fl Z, and y c Y fl Z. Since 4 is
one-to-one, x ¢ Y. However, the fact that x is adjacent to v, v' and y

in G and v, v', y c Y contradicts (Al).

The proof of Lemma 9.7 is complete. //
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To end this section, we shall prove that M(n) is true for all n.

This is a consequence of Theorem 9.8. We need the following

definition. We call a multigraph on three vertices x, y and z such that

u(x,y) = s, u(x,z) - s - 1, and u(y,z) = 1 an s-triangle. Thus a

2-triangle is a 4-sided triangle.

Theorem 9.8 (Kierstead [84]) Let M be a multigraph with A(M) = A and

u(M) = u > 1. If q = X'(M) = A + u, then M contains a u-triangle.

Proof. Suppose the theorem is false. Let M' be a multigraph such that

q = X'(M') = A(M') + p(l4') and M' does not contain a p(M')-triangle. By

deleting edges from M', if necessary, we obtain a multigraph M such that

X'(M) = X'(M') = q = A(M') + u(M') > A + u .

where A = A(M), u = u(M) < u(M'), M does not contain a u(M')-triangle

and M contains a critical edge e0 = u0u1. However, by Vizing's theorem,

X'(M) t A + V. Hence X'(M) = A + p, A = A(M'), p = p(M') and M does not

contain a u-triangle. Let n be a (q-1)-colouring of M - e0. We shall

prove that it can be modified to yield a (q-l)-colouring of M, which

contradicts the assumption that X'(M) = q.

We call a path P = [u0,ul,...,un] ir-acceptable if for each i > 0,

ir(e e U C'(u where ei = uiui+l a E(M) and C'(uj) = C.R(uj). The
J <i

notion of n-acceptable paths is a generalization of Gol'dberg's notion

of "(a,8)-link chains" (Gol'dberg [771).

The following two lemmas are the keys to the proof of Theorem 9.8.

Lemma 9.9 For every (q-1)-colouring it of M - e0 and every ir-acceptable

path P = [uo,ul,...,unl, C.'R(ui) n Cn(uj) _ if i # j.

Proof. Suppose i < j and C'(ui) n C'(uj) # ¢. Let a e C'(ui) n C'(uj).

We prove this lemma by induction on J. If j 1, then we can assign

colour a to the edge e0 to get a (q-1)-colouring of M, a contradiction.

Now suppose j > 1. We argue by induction on j - i. First suppose

that j - i = 1. Let n(ej_1) a C'(u,), where m < j - 1. Recolour the

edge ej_1 with colour a. Denote this new colouring of M - e0 by nl.

Then P1 = [u0,...,uj_l] is rl-acceptable and C1111 (um) n Cnl(uj_1) # m, a

contradiction to induction hypothesis. Next, suppose j - i > 1. Let
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B e Cn(ui+1) By the induction hypothesis, B 0 a. We now consider the

(a,B),R-chain C having origin ui+1. By the induction hypothesis, C can

neither end at any of the vertices uk for k < i nor include any of the

edges ek for k < I. Let n1 be obtained from a by interchanging the

colours in C. Suppose C does not end at ui. Then P1 =

is n1-acceptable. But now Cn1(ui) fl Cn1(ui+i) # 0, a contradiction to

the induction hypothesis. Suppose C ends at ui. Then P =

[u0,u1,...,uj1 is 7T1-acceptable and a e Cnl(ui+1) n C,'1(uj), another

contradiction to the induction hypothesis.

Lemma 9.10 Let N be the sub-multigraph of M induced by U =

{u0,u1,...,un}. Then dN(un) < n(p - 1) + 1.

Proof. Partition U into {{ui,ui+i}I i = 2j < n - 1} U {u} where {u}

if n is even and {u} = {un_1} if n is odd. Since N does not contain a

p-triangle and p(N) < U(M) = u, there are at most 2U - 2 edges joining

un to each of the first [1 parts of the partition and v edges joining

un to u. Thus when n is even, dN(un) < 2 n(2p - 2) = n(U - 1) and when

n is odd, dN(un) < 2 (n - 1)(2U - 2) + U = n(U - 1) + 1.

Finally we prove that if P is a maximal it-acceptable path in M,

then Lemma 9.9 and Lemma 9.10 cannot hold simultaneously.

Let S = U i= C'(ui). By Lemma 9.9, ISI = i=0 IC'(ui)I. But

for i > 2, IC'(ui)I > (A + U - 1) - A = u - 1 and for i = 0, 1,

IC'(ui)I > (A + U - 1) - (A - 1) = U. Thus ISI > n(p - 1) + 2. By

Lemma 9.10, dN(un) < n(U - 1) + 1. Hence there exists y e S such that

a(e) # y for every edge e in N incident with un. Since P is maximal,

n(e) # y for every edge e e E(M) - E(N) and incident with un.

Consequently y e C'(um) (1 C'(un) for some m < n, contradicting Lemma 9.9.

The proof of Theorem 9.8 is complete.

Combining Lemma 9.1 and Theorems 9.4 and 9.8, we have

Theorem 9.11 If a graph G does not induce K1,3 or K5 - e, then x(G) <

w(G) + 1.
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Remarks. Erdos [67] had proved that there exist positive constants cl

and c2 such that

(1) for every positive integer n, there is a graph G of order n

satisfying

X(G) > cln(log n)-2w(G), and

(2) for every graph G of order n,

X(G) < c2n(log n)-2w(G).

Thus Erdos' result indicates that if a graph G induces K1 3 or K5 - e,

then the actual value for X(G) is hard to determine.

Exercise 2.9

1. Complete the proof of Lemma 9.1.

2. Prove Lemma 9.3.

3. Let G be the graph given in Fig.2.25 (due to Myciedski [551). Prove

that X(G) = w(G) + 2. (Note that G induces K13
3
and w(G) - 2.)

Figure 2.25

4. Let G = C5 + C5, the join of C5 and C5. Prove that x(G) = w(G) + 2

(Choudum [77]). (Note that G induces K5 - e and w(G) = 4.)

10. Applications to the reconstruction of latin squares

When a school principal is trying to construct a school timetable

for his school, a good first step might seem to be to construct an

outline timetable in which all Mathematics teachers are counted
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together, all English Language teachers are counted together, etc., all

classes of each year group are counted together, and in which the

preliminary division is into days rather than lessons. Having

constructed an outline timetable satisfying some requirements, he might

then go on to develop this outline timetable into a complete timetable.

In this section, we shall apply the theory of edge-colourings to

reconstruct latin squares. This reconstruction of latin squares can be

applied to the above school timetabling designs as well as to some

experimental designs. The results of this section are due to Hilton

[80]. We first define some terms.

A latin square L of size n is an n x n matrix on symbols 1, ..., n

in which each row and each column contain each symbol exactly once.

A composition A of a positive integer n is a sequence (al, ..., am)

of positive integers such that al + a2 + ... + am = n. Let P = (P1'

...I pr), 0 = (q1, , qs) and S = (sl, ..., st) be three compositions

of n. The reduction modulo (P,Q,S) of a latin square L of size n on the

symbols 1, ..., n is obtained from L by amalgamating rows pl + ... +

Pi-i + 1, ..., P1 + ... + pi, columns q1 + ... + qj-1 + 1, ..., ql + ...

+ qj and symbols sl + ... + sk_l + 1, ..., 61 + ... + sk for 1 < i < r,

1 < j < s and 1 < k < t. More precisely, for I < A < r, 1 < u < s and
1 < E < n, let x(A,u,E) be the number of times that symbol E occurs in

the set of cells {(i,j) I pl + ... + pX-1 + I < i < pl + ... + pX, q1 +
... + qu_1 + 1 < j < q1+ ... + qu} and for 1 t k < t, let

xk(X,u) = x(),,u,sl + ... + sk_1 + 1) + ... + x(A,u,s1 + ... + sk).

Then the reduction modulo (P,Q,S) of L is an r x a matrix B whose cells

are filled with the symbols t1, ..., Tt (say) and in which cell (A,u)

contains Ak xk(A,u) times.

The following is an example of the reduction modulo (P,Q,S) of L.

Example. Let L be the latin square of size 12 given in Fig.2.26 in

which it = 10, - = 11 and e = 12. Let r= 3, s - 4 and t= 4, and let

P = (P1,P203) = (4,4,4), Q = (gl,g2,q3,q4) _ (5,3,3,1) and

S = (sl,s2,s3,s4) _ (4,3,3,2). Let I be the composition consisting of a

sequence of the appropriate length of l's.
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e 1 2 3 4 5 6 7 8 9 it

it e 9 1 7 2 8 3 6 4 5

it e 1 9 2 8 3 4 7 5 6

9 IT 8 e 1 7 2 5 3 6 4

5 6 7 it 8 e 4 1 9 2 w 3

1 2 3 4 5 6 9 7 8 e n

4 9 1 5 2 it 3 6 e 7 8

2 3 4 e 6 8 5 n 1 9 7

6 7 8 w it 3 e 5 2 4 1 9

7 8 5 6 3 4 9 it 1 2 e

8 4 9 2 7 w it e 6 5 3 1

3 5 6 7 9 1 4 e it 8

Figure 2.26

1 1 1 2 3 1 2 2 3 3 4 4

4 8 9 9 9 2 3 5 4 5 5 5

it it IT m m 6 7 7 6 6 7 6

e e e e 7 8 8 8 9 it it

1 1 2 2 2 1 3 4 1 2 7 3

3 3 4 4 4 5 6 6 7 8 9 7

5 5 5 6 6 8 9 it 9 W m 8

7 8 9 n e it e e e it

2 3 3 4 5 1 3 4 1 1 2 1

5 6 6 6 7 4 5 9 2 3 4 2

7 7 7 8 8 9 IT w 5 6 8 9

9 9 IT m W e e IT it e e

Figure 2.27
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The reduction of L modulo (P,Q,I) is given in Fig.2.27. In this

figure, there is not intended to be any significance in the way the

symbols are arranged in each cell.

Finally, we obtain the reduction modulo (P,Q,S) of L by replacing

1, 2, 3and4bya=T1; 5, 6 and 7 by 6 = T2; 8,9andifby6=T3; and
and e by e = T4 (see Fig.2.28).

a a a a a a a a a a a a

a 6 6 6 6 a a 8 a 8 8 8

6 6 6 e e 6 8 6 8 8 8 8

e e e e e S 6 6 6 6 6 6

a a a a a a a a a a 8 a

a a a a a 6 8 S 8 6 6 8

i 6 6 6 9 6 6 6 6 6 e e 6

6 6 6 6 e 6 e e e e E e

a a a a 8 a a a a a a a

6 6 8 6 6 a 6 6 a a a a

S 9 d 6 d 6 e 6 6 6 6

' 6 6 6 c E E E E 6 6 E E

Figure 2.28

We now define an outline rectangle. Let C be an r x s matrix

filled with t symbols T1,...,Tt in which each cell may be occupied by

more than one symbol and in which each symbol may occur more than

once. For 1 < i < r, 1 < j < s and 1 < k < t, let pi be the number,

including repetitions, of symbols which occur in row i, let cj be the

number, including repetitions, of symbols which occur in column j and

let ak be the number of times Tk appears in C. Then C is called an

outline rectangle if, for some integer n, the following properties are

obeyed for each i, j, k such that 1 < i < r, 1 < j < s and 1 < k < t:

(i) n divides each pi, cj and ak;

(ii) cell (i,j) contains (1/n2)picj symbols (including repetitions);

(iii) the number of times Tk appears in row i is (1/n2)piok;
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(iv) the number of times tk appears in column j is (1/n2)cjak.

From the above definitions, the reduction modulo (P,Q,S) of a latin

square L is an outline rectangle and has the further properties

(v) (PI9...,pr) _ pn ,..., cn)

(vi) (gl,...,g5) = (cn ,..., cn)

(vii) (sl,...,st) _ (an ,..., cn)

(viii) i=lpi 7j=1c. f it ak =
n2.

k=l

We shall now show that any outline rectangle could have been formed

from some latin square by reduction modulo (P,Q,S) for some suitable

compositions P, Q and S. The main tool is a theorem of de Werra on

balanced edge-colourings of a multigraph M.

Suppose n is a k-edge-colouring (not necessarily proper) of a

loopless multigraph M. For each v e V(M), let Ei(v) be the set of all

edges incident with v each of which is coloured with colour i, and for

each u, v e V(M), u # v, let Ei(u,v) be the set of all edges joining u

and v each of which is coloured with colour i. Then n is said to be

equitable if, for all v e V(M),

(a) max IIEi(v)I - IEj(v)II < 1

1<i,j<k

and n is said to be balanced if, in addition, for all u,v c V(M), u # v,

(b) max IIEi(u,v)) - IEj(u,v)II < 1.
1<i,j<k

Thus an edge-colouring of M is balanced if the colours occur as

uniformly as possible at each vertex of M and if the colours are shared

out as uniformly as possible on each multiple edge of M.

We shall apply the following theorem due to de Werra [71,75a,75b].

The proof given here is due to Andersen and Hilton [79].

Theorem 10.1 For each integer k > 1, any finite bipartite multigraph M

has a balanced edge-colouring with k colours.
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Proof. Colour the edges of the multigraph in such a way that (b) is

satisfied; condition (b) only affects each multiple edge by itself, so

this is clearly possible. We then modify the colouring to make (a) be

satisfied without violating (b). Suppose that at some vertex v,

max IIE1(v)I - IEj(v)II > 1.
1<i<j<k

We may suppose that this maximum is attained for colours 1 and 2 and

that IE1(v)I > IE2(v)I + 1. Let P be a maximal chain v - v0, el, v1,

e2, v2, ..., eh, vh

if i # j) such that

(where ei is an edge joining vi-1 to vi and ei # ej

(I) el is coloured with colour 1,

(II) el.... ,eh are coloured alternately with colours 1 and 2,

(III) IE1(vi,vi+1)I = IE2(vi,vi+l)I + 1

IE2(vi,vi+1)I = IE1(vi,vi+1)I + 1

if i is even, and

if i is odd,

(IV) P uses only one edge from each multiple edge.

(Note that the same vertex may occur several times in P.)

Then h # 0 because v has some neighbour vl for which IE1(v,v1)I =

IE2(v,vl)I + 1, since IE1(v)I > IE2(v)I + 1. Also vh # v0, because if

vj = v0, then j is even as the multigraph is bipartite, so when j edges

have been traversed, both colours have occurred the same number of times

in total on the multiple edges incident with v0 used so far and so the

chain can be continued since IE1(v)I > IE2(v)I + 1.

Interchanging the two colours 1 and 2 on the chain P clearly does

not violate (b), it reduces the number of pairs of colours for which

IIEi(v)I - IEj(v)II was maximal by at least one and it does not affect

14max4kI
IEi(vt) I - IEj(vt)I I

if 0 < t < h.
If h is odd, then eh is coloured with colour 1, so the maximality

of P implies that the number of multiple edges (vh,x) on vh for which

IE1(vh,x)I - IE2(vh,x)I + 1
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exceeds the number of multiple edges on vh for which

IE2(vh,x)I = IE1(vh,x)I + 1

by at least one, so colour 1 occurs at least once more than colour 2 at

vh. Thus

max IIEi(vh)I - IE.(vh)II
1Ci<jtk

will not be increased. A similar statement is true if h is even.

Repeated application of the argument then proves Theorem 10.1.

We now apply Theorem 10.1 to prove the main theorem of this

section.

Theorem 10.2 (Hilton [801) To each outline rectangle C there is a

latin square L and there are compositions P, Q and S such that C is the

reduction of L modulo (P,Q,S).

Proof. First we observe that if m is the number of entries in C, then

m= Lr P =
s c = Cr Cs 1 p c = 1 r s c)= m2

i=1 i j=1 j i=1 j=1 n2 1 j n2 i=1 j n2 '

som=n2.

We next observe that the outline rectangle can be represented as a

family of triples (x,y,z) where each occurrence of each symbol in each

cell of C corresponds to exactly one triple, the first coordinate

denoting the row the cell lies in, the second coordinate denoting the

column the cells lies in and the third coordinate denoting the index of

the symbol Tk that the cell contains. Thus if cell (i,j) contains the

symbol Tk we obtain the tripe (i,j,k). There are therefore n2 triples,

counting repetitions. The conditions (ii), (iii) and (iv) now take on

the move symmetrical form:

(ii)' (i,j) occurs as the first pair in (1/n2)picj triples;

(iii)' (i,k) occurs as the first and last entries in (1/n2)piak triples.
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(iv)' (j,k) occurs as the last pair in (1/n2)cjak triples.

Because of this symmetry we may, without loss of generality,

confine the explanation to the case that r < n and show that C can be

obtained from an (r + 1) x a outline rectangle C' by amalgamating the

cells of two rows (so that any pair of cells in these two rows which are

in the same column are identified) or, in other words, by reduction

modulo (P*1I,I), where P* is a composition with one term 2, the rest all

l's. Repeated application of this argument first on the rows, then on

the columns and finally on the symbols will show that C can be obtained

from an n x n outline rectangle on n symbols, i.e. a latin square, by

reduction modulo (P,Q,S) for some compositions P, Q and S.

Since r < n, n divides pl, ..., pr and Ii=1 Pi/n = n, there is at

least one i for which pi/n > 1. We may assume, without loss of

generality, that Pr/n > 2. We wish to form an outline rectangle C' by

splitting the last row of C into two new rows. We construct a bipartite

multigraph M with vertex classes {yl,...,ys) and {Tl,...,t } where the

vertex yj is joined to the vertex Tk by y edges if and only if the

symbol Tk occurs y times in cell (r,j) of C. Then the valency of yj is

the number, including repetitions, of symbols in the cell, namely

(1/n2)Prcj, and the valency of the vertex Tk is the number of times Tk

occurs in row r of C, namely (1/n2)prak

We now give M a balanced edge-colouring with pr/n colours. Let El

be the set of those edges coloured with colour 1. Then each vertex yj

is incident with exactly

P
(12 Prcj) =

1
cj

Pr n

edges receiving colour I. Now split row r of C into two rows r' (to be

row r + 1 of C') and r" (to be row r of C') by placing a symbol Tk in

cell (r',j) x times if and only if there are x edges of colour 1 joining

the vertices yj and Tk and by placing Tk in cell (r",j) y times if and

only if there are y edges of colours different from 1 joining the

vertices yj and Tk.

We now check that C' is an outline rectangle . Let pi = pi (1 < i

< r), pr' =pr - n and P41 =n. Let c! =cj (1 < j a) and Tk=Tk
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(1 < k < t). Then clearly n divides each of pi, c! and ak. Cells (r,j)

and (r+1,j) of C' contain, respectively,

n2 cj (Pr - n) = n2 and n `j n2 Pr+1cj

symbols, including repetitions. Each symbol rk occurs

12
(Pl - n)ak 12 Prak

n n

times in row r of C' and

_ r r

n k 2 Pr+1ak
n

times in row r + 1. Thus in these cells and rows conditions (ii), (iii)

and (iv) applied to C' are satisfied and also they are clearly satisfied

in all columns and all other cells and rows.

This proves Theorem 10.2.

Exercise 2.10

1. Show that if a bipartite multigraph M has a balanced edge-colouring

n, then M has a balanced edge-colouring n* such that the colour

classes El, ..., Ek of n* can be made in such way that IE1I < IE2I <

... < JEkl < IE1I + 1 (Bollobas [79;p.63,Ex.91).

2. Let C be the outline rectangle given by Fig.2.28. Using the

balanced edge-colouring technique of the proof of Theorem 10.2,

reconstruct a latin square L so that C is the reduction of L modulo

(P,Q,S) for some compositions P, Q and S.

11. Concluding remarks

To conclude this chapter, we shall now briefly mention some other

interesting and important results concerning edge-colourings which we

have not been able to discuss in detail due to lack of space.

76



I.. Snarks.

Due to the fact that the Four-Colour Conjecture is equivalent to

the assertion that every bridgeless cubic planar graph is 3-edge-

colourable, much attention has been paid to the the search for

bridgeless cubic graphs which are not 3-edge-colourable. Since such

graphs are difficult to find, Gardner [76] christened them snarks after

Lewis Carroll's "The Hunting of the Snark". (Even after the Four-colour

Conjecture has been proved, many people are still searching for non-

planar snarks.)

Suppose G is a cubic graph which contains a triangle K3 and X'(G')

4. Let G* be the graph obtained from G by contracting K3 into a

vertex. Then X'(G*) = 3 implies that X'(G) = 3, a contradiction.

Hence, in order to avoid trivial cases, we assume that a snark does not

contain triangles. For similar reasons, we also assume that a snark

does not contain quadrilaterals and does not contain three or two edges

whose deletion results in a disconnected graph each of whose component

is nontrivial. Hence a snark can be precisely defined as follows : A

snark G is a cubic graph of girth at least 5 with X'(G) = 4, which is

cyclically-4-edge-connected (i.e. G does not contain three or fewer

edges whose deletion results in a disconnected graph, each of whose

component is nontrivial).

The smallest snark is the Petersen graph found in 1898. The second

snark (of order 18) was found by Blanusa in 1946. The third snark (of

order 20) was found by Descartes in 1948. The fourth snark (of order

50) was found by Szekeres in 1973.

Two infinite families of snarks were found by Isaacs in 1975. The

first family includes all the four known snarks. The second family has

been discovered independently by Grinberg in 1972, but never

published. Isaacs also discovered a snark of order 30, which does not

fit into either of the two infinite families. In some unpublished work

done in 1976, F. Loupekhine also constructed an infinite family of

snarks.

The fourth infinite family of snarks of even order (see §4) was

found by Gol'dberg in 1979. Further snarks have been found by U. A.
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Celmins and E. R. Swart (University of Waterloo Research Report CORR

79-18).

The following is a long standing conjecture concerning snarks.

Tutte's Conjecture (Tutte [691) Every snark contains a subgraph

homeomorphic to the Petersen graph.

2. Edge-colourings and groups

Cameron [75a, 75b] studied relations between the colour classes of

an (n-1)-edge-colouring of Kn, n even, and some permutation groups of

the vertices of Kn (see Ex.2.1(7) and 2.1(9)). Further results

concerning edge-colourings and groups can also be found in Biggs [72]

and Cameron [76].

3. The Total Colouring Conjecture

The total chromatic number X2(G) of a graph G is the minimum number

of colours required to colour the elements (vertices and edges) of G in

such a way that two adjacent, as well as two incident, elements of G

receive different colours. It is obvious that for any graph G, X2(G)

A(G) + 1. In 1965, M. Behzad made the following conjecture.

The Total Colouring Conjecture For any graph G, X2(G) < A(G) + 2.

It is easy to show that X2(K3,3) a 5. Thus if the Total Colouring

Conjecture is true, then it is best possible. Rosenfeld [71] proved

this conjecture for bipartite, complete tripartite and complete balanced

n-partite graphs, and also for all graphs G with A(C) < 3. However,

this long standing conjecture still remains open. For a survey of

results on this conjecture, see Behzad [71].

In a recent paper by Bollobas and Harris [85], it is proved that if

A(G) is large enough, then X2(G) < cA(G) where 11/6 < c < 2.

4. Extensions of partial edge-colourings

A partial edge-colouring of a graph G is an edge-colouring of some

subgraph G' of G. Andersen and Hilton [80] showed that any partial
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edge-colouring of Kn with at most 2n - 1 colours can be extended to an

edge-colouring of K2n with 2n - 1 colours. They also showed that any

partial edge-colouring of Kn with 2n + 1 colours can be extended to an

edge-colouring of K2n+1 with 2n + 1 colours. The idea of extending a

partial edge-colouring has been further explored in Chetwynd and Hilton

[84a].

5. Feasible sequence for a graph

A non-increasing sequence F = (fl, f2) ..., fk) of non-negative

integers is feasible for a graph G if there is a k-edge-colouring n of G

such that the colour classes El, E2, ..., Ek of n are such that 1E1I =

fi, i = 1, 2, ..., k.

The following two theorems are very useful in constructing

chromatic index critical graphs, see for instance, Plantholt [-a].

Theorem 11.1 (de Werra [71b], McDiarmid [72]) If the non-increasing

sequence F = (fl) f2, ..., fk) is feasible for a graph G, then so is any

sequence F' (fi, f2, ..., fk) such that

i=1
fi 1i=1 fi and 1i=1 fit Li=1 fi

for j = 1, 2, ..., k-1.

Theorem 11.2 (Folkman and Fulkerson [69]) Suppose F = (fl, f2, ...,

fn) is an increasing sequence of non-negative integers. Let

f* = max {i I fi > 1} and let B be a bipartite graph of size
f=l

f

Then F is feasible for B if and only if

e(B - X) > Lf=IXI+i f for all X = V(B).

6. The circumference of critical graphs

Vizing [65b], using his Adjacency Lemma, proved that if G is a

A-critical graph, then C contains a circuit whose length is at least

A + 1. Fiorini [75c] proved that if G is a A-critical graph of order n

whose minimum valency is d, then G contains a circuit whose length is at

least
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2 log((n - 1)(A - 2)/6)
ogA- 1)

7. The girth of critical graphs

Fiorini [76] proved the following theorems concerning the girth of

chromatic-index critical graphs.

Theorem 11.3 For any integers A > 3 and y > 3, there exists a

A-critical graph of girth y.

Theorem 11.4 Let G be a A-critical graph of order n and girth y.

(i) If y - 3, then n > A + 1 if A is even; and n > A + 2 if A is odd.

(ii) If y = 4, then n > 2A + 1.

Moreover, there exist critical graphs which attain these bounds.

8. Uniquely colourable graphs

We refer to Ex.2.2(7) for the definition of a uniquely k-colourable

graph. It was conjectured in Fiorini [75a] and Wilson [75] that if k >

4, then the only uniquely k-colourable graph is the star Sk+1 This

conjecture has been proved by Thomason [78]. For k - 3, the following

two conjectures are still open.

Conjecture 1 (Fiorini and Wilson [77]) Every uniquely 3-colourable

cubic planar graph contains a triangle.

Conjecture 2 (Greenwell and Kronk [73]) If G is a cubic graph with

exactly three Hamilton cycles, then G is uniquely 3-colourable.

A bibliography on edge-colourings of graphs can be found in Fiorini

and Wilson [77]. The list of papers published after 1977 appearing in

the references of this chapter can be served as a complement to the

bibliography compiled by Fiorini and Wilson.
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3. SYMPETRIES OF GRAPHS

1. The automorphism group of a graph

Suppose G and H are two graphs. If : V(G) + V(H) is an injection

such that xy a E(G) implies that +(x)$(y) e E(H) for any edge xy of G,

then is called a monomorphism from G to H. If there exists a

monomorphism from G to H, then we say that G is embeddable in H. Two

graphs G and H are isomorphic if there is a bijection 4 : V(G) + V(H)

such that xy c E(G) if and only if ¢(x)1(y) a E(H). An isomorphism from

G onto itself is called an automorphism of G. The set of all

automorphisms of C forms a group under the composition of maps and is

denoted by Aut G, A(G) or simply by A. Thus we can consider A(G) as a

group acting on V(G) which preserves adjacency. The automorphism group

A(G) of G measures the degree of symmetry of G. If A(G) is the identity

group, then G is called an asymmetric graph.

It was known to Riddell [51] that for large integers p, almost all

labelled graphs of order p are asymmetric. Erdos and Renyi [63] gave a

proof of this result using probabilistic methods. An outline of a proof

of this result can also be found in Harary and Palmer [73; p. 206].

Wright [71,74] proved the same result for unlabelled graphs and

Bollobas [82] generalized Wright's result to unlabelled regular graphs.

Suppose G is a graph. If G is asymmetric, then any vertex of G is

distinguishable from all its other vertices. The other extreme

situation is that for any two vertices x and y of G, there is an

automorphism m of G such that 4(x) = y, in other words, the automorphism

group A(G) of G acts transitively on the vertex set V(G) of G. In this

case, we say that G is vertex-transitive (or vertex-symmetric).

It was pointed by E. Artin (Geometric Algebra, Interscience, New

York, 1957) that "the investigation of symmetries of a given

mathematical structure has always yield the most powerful results".

Graphs form a nice mathematical structure. Many results on vertex-

transitive graphs have been shown to be very useful in the construction



of finite simple groups and block designs etc. The mean objectives of

this chapter are to study various general properties of vertex-

transitive graphs, and to classify the set of all vertex-transitive

graphs according to different kinds of actions of the automorphism group

on the vertex set. The following is a summary of the results presented

in this chapter.

In §1 (an introductory section), we prove a simple relationship

between vertex-transitivity and edge-transitivity.

In §2, we study the degree of asymmetry of asymmetric graphs.

In §3, we prove that for any given group r, there exists a graph G

such that A(G) = r and we also mention several generalizations of this

result.

In §4, we prove that every Cayley graph is vertex-transitive and

that every vertex-transitive graph has a group-coset graph

representation. We also mention some results on the graphical regular

representation of a group.

In §5, we prove that every vertex-transitive graph of prime order

is a circulant graph and we also give a formula for enumerating all

circulant graphs of a given prime order p.

In §6, we show that any graph G can be auto-extended to a finite

Cayley graph which preserves the chromatic number.

In §7, an elegant proof (due to Weiss) of Tutte's famous theorem on

s-transitive cubic graphs is given.

In §8, we give a partial characterization of 4-ultratransitive

graphs.

In §9, we discuss some progress made towards the resolution of

Lovasz' question which asks whether or not every connected Cayley graph

is Hamiltonian.

In §10, we briefly mention some other interesting and important

results about symmetries of graphs which we have not been able to

disucss in detail due to lack of space.

Suppose G is a graph. It is clear that each m in A(G) induces a

bijection on E(G). If A(G) acts transitively on E(G), we say that G is
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edge-transitive (edge-symmetric).

The graph given in Fig.3.1(a) is vertex-transitive but not edge-

transitive. The graph given in Fig.3.1(b) is edge-transitive but not

vertex-transitive.

Figure 3.1

Two vertices x and y of G are said to be similar if there exists an

automorphism of G such that 4(x) = y. It is clear that if two

vertices x and y are similar, then d(x) = d(y) and G - x = G - y.

However, the converse is not true. An example can be found in Harary

[69; p.171].

Theorem 1.1 below tells us a relationship between vertex-transitive

graphs and edge-transitive graphs. This theorem, according to Harary

[69;p.172], is due to Elayne Dauber. The proof given here is reproduced

from Harary [69; p.172].

Theorem 1.1 If G is an edge-transitive graph with no isolated vertices,

then either (i) G is vertex-transitive, or (ii) G is bipartite and G has

two vertex-orbits which form the bipartition of G.

Proof. Let e = uv c E(G), and let V1 and V2 denote the orbits of u and

v under the action of A(G) on V(G). Since G is edge-transitive, V1 U V2

= V(G).

(i) If V1 n V2 * 4, then G is vertex-transitive.

Let x and y be any two vertices of G. If x, y c V1, say, then

there exist 4, i e A(G) such that (u) = x and 4(u) = y. Thus the

automorphism 44-1 is such that *,-1(x) = y. If x e V1 and y c V21 let

w c V1 n V2. Since w is similar to both x and y, x and y are similar to

each other.
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(ii) If V1 n V2 = , then G is bipartite.

Consider two vertices x and y in V1. If they are adjacent, then

there is i c A(G) such that TP(e) = xy, which implies that one of the two

vertices x and y is in V1 and the other is in V2, a contradiction.

Hence G is bipartite.

Corollary 1.2 If an edge-transitive graph G is regular of degree at

least one and of odd order, then G is vertex-transitive.

Proof. If G is bipartite, then IGI is even.

Corollary 1.3 If G is edge-transitive and regular of degree d > IGI/2,

then G is vertex-transitive.

From the above corollaries, we know that if G is edge-transitive,

regular of degree d and not vertex-transitive, then p = IGI is even, and

d < p/2. Folkman [67] has proved that for each p ) 20 divisible by 4,

there exists a regular graph G of order p which is edge-transitive but

not vertex-transitive.

Exercise 3.1

1: Show that for any graph G, A(G) = A(Z;).

2: Show that the graph given in Fig.3.1(a) is vertex-transitive but

not edge-transitive.

3: Suppose G is a graph of order p. Prove that A(G) = Ep, the

symmetric group of degree p, if and only if G = Kp or Op.

4. Prove that A(Cp) = DP, the dihedral group of degree p.

5. Find the automorphism group of the following graph

(Behzad and Chartrand [71;p.177]).
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6. Prove that every connected, vertex-transitive graph of finite order

has no cut-vertices.

7. A graph G is said to be symmetric if it is both vertex-symmetric

and edge-symmetric. A graph G is said to be 1-transitive if for

any two edges xy and uv of G, there is an automorphism i of G such

that *(x) = u and dr(y) = v. Prove that every symmetric, connected

graph of odd degree is 1-transitive (Tutte [66;p.59]).

(Note that Bouwer [70] proved that for any integer n > 2, there

exists a connected graph which is symmetric but not 1-transitive.

Holt [81] has constructed a graph of order 27, regular of degree 4,

which is symmetric but not 1-transitive. This graph is the Cayley

graph G = G(P,S) where the group t = <a,8
I

a9 = 33 = 1,3-1a3 = a4>

and S = {3a, 8a-1, 82a2,
32a-2).

For definition of a Cayley graph,

see §4.)

8. Let G and H be two graphs. If 4> : E(G) + E(H) is a bijection such

that if any two edges e and f are incident in G, 4>(e) and 4)(f)

are also incident in H, then m is called an edge-isomorphism from G

to H.

Prove that if 4 is an edge-isomorphism from a connected graph G

to a connected graph H, where G # K3, S4, K4 or one of the

following two graphs, then 4) is induced by an isomorphism from G to

H (Whitney [32], see also Behzad, Chartrand and Lesniak-Foster [79;

p.177]).

9t Let G be an edge-transitive graph which is regular of degree d.

Prove that if IGI = 2p or 2p2, where p is a prime, then G is

vertex-transitive (Folkman [67]).

2. Asymmetric graphs

In section 1 we have mentioned that for large p, almost all graphs

of order p are asymmetric. Thus we shall first study some properties of
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asymmetric graphs before we study symmetries in graphs.

Evidently any asymmetric graph can be turned into a non-asymmetric

graph by deleting some of its edges and by adding some new edges joining

its vertices. We call such a transformation of a graph G a

symmetrization of G. Suppose in a symmetrization of G, r edges have

been deleted and s edges have been added. We define the degree of

asymmetry a(G) of G as the minimum of r + a where the minimum is taken

over all possible symmetrizations of G. Hence a graph G is asymmetric

if and only if a(G) > 0.

For a fixed positive integer n, we denote by A(n) the maximum of

a(G) for all graphs G of order n. By convention, we define A(1)

+ M. It is obvious that A(2) = A(3) = 0. Using the fact that for any

Graph G, a(G) = a(6), we can prove that A(4) = A(5) = 0 (see Ex.3.2(1)).

We now prove the main theorem of this section.

Theorem 2.1 (Erdos and Renyi [63]) A(n) <
n2

Proof. It is clear that for n < 3, A(n) = 0. Hence we suppose n > 4.

Let G be a graph having n vertices vl, v2, ..., vn and let dk be the

valency of vk. For two distinct vertices
Vi

and vk, let fjk be the

number of vertices vi which are adjacent to both vj and vk. We also

define fjj = 0. By definition, it is clear that fjk = fkj. Since
n n

f k is the number of ordered pairs of edges of G which have one
j=1 k1 j
common vertex, we have

n n n
I If = Id (d -1) (1)jl kl jk i=1 i i

For j * k, we also define

Ajk = dj + dk - 2fjk - 26jk (2)

where 6jk = 1 or 0 according to whether vj and vk are adjacent or not.

We further define Ajj = 0. Evidently, Ajk is the number of vertices

which are adjacent to either vj or vk but not both.

Now by deleting all the Ajk edges joining to either Vi or vk but

93



not both, we obtain a graph G' in which vj and vk are similar. Thus

n n
A(n) < min Ajk < n n11) Ajk

j*k j=1 k=1

Next, from (1) and (2) we have

n n n

= 2 E d (n - 1- d)
J11 k=i jk i=1

i i

It is clear that

di(n - 1 - di) _ CT )2 - (di - L2-1)2

From (3), (4) and (5), we obtain

n-1
if n is odd

if n is even
2(n-1)
n(n-2)

(3)

(4)

(5)

(6)

However, since n > 4,
n(n-2)

<
n

, Consequently, A(n) <
2T;717 2 2

It is clear that if there exists a graph G of odd order n such that

a(G) = n2then

j*k J
min Ak = n21

As by (3), (4) and (5), we have for odd n,

(7)

min A
n n-1

S Ajk <
n21

j*k j*k

It follows that (7) can hold only if Ajk = n21 for all j * k. In this

case, it follows from (5) that we also have di = °21 for all i = 1, 2,

..., n. Now if n 5 3 (mod 4), then n21
is odd. This contradicts the

fact that in any graph the number of vertices having odd valency is

even. Thus (7) can hold for an odd n only if n 5 1 (mod 4).

We shall call a graph G of order n, n 5 1 (mod 4), for which (7)

holds a A-graph. Erdos and Renyi [63] have constructed many A-graphs.

Their graphs constructed in this connection are all both vertex-
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transitive and edge-transitive. This indicates that, although most

graphs are asymmetric, the class of graphs having many similar vertices

also plays an important role in graph theory. Further examples are

Turan's graphs Tr(n) (see Bondy and Murty [76;p.110]) which also have

many similar vertices.

Conjecture (Erdos and Renyi [63]) The automorphism groups of all

A-graphs are nontrivial.

Exercise 3.2

1: Prove that A(4) = A(5) = 0.

2. Construct four asymmetric graphs of order 6 each having size at

most 7. Determine the degree of asymmetry of each of these four

graphs.

3. Let n and k be two positive integers such that n > 2k + 1. Let

C(n,k) denote the least value such that there exists a connected,

asymmetric graph G of order n, having C(n,k) edges, and a(G) = k.

Prove that C(n,l) = n - 1 for n > 7.

4+. Let Ct be the class of connected graphs having no vertices of

valency 2. Let Ct(n,l) denote the least value such that there

exists an asymmetric graph G in Ct having n vertices, a(G) = 1 and

Ct(n,1) edges, where the non-asymmetric graph obtained from G by

applying a symmetrization to G is again in Ct. Prove that Ct(7,1)

= 11, and

- n + 2 for n = 8 + 2p, p = 0, 1, 2, ...
CC(n,1)

n+ l for n = 9+ 2p, p-0,1,2,
(Quintas [67; Theorem 9]).

5. Prove that a(T) < 1 for any tree T.

6+. Prove that, for large n, the automorphism groups of almost all

trees of order n are nontrivial (Erdos and Renyi [63]).

7+. Let F(n,k) be the smallest integer such that there exists an

asymmetric graph G with n vertices, a(G) = k and F(n,k) edges.

Prove that C(n,2) > F(n,2) for n > 21 (Baron [70]).
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(Note that Shelah [73) proved that (i) for sufficiently large n,

F(n,2) = n + 1, C(n,2) = n + 2; for odd k > 2, and n sufficiently

larger than k, F(n,k) = C(n,k) = [(k + 3)n/4 - 0.5[2n/(k + 3)] + 2];

and (iii) for even k > 2 and n sufficiently larger than k, F(n,k)

C(n,k) = [(k + 2)n/4 + 2)].)

8t Let m(n) (Pi(n)) be the minimum (maximum) degree of regular

asymmetric graphs with n vertices. For k > 0, let p(k) be the

least number of vertices of asymmetric, regular graphs of degree
k. Prove that (i) m(n) = 4, M(n) = n - 5 for odd n > 10 and m(n) _

3, M(n) = n - 4 for even n > 10; (ii) p(k) = k + 4 for even k > 6,

and p(k) k + 5 for odd k > 6 (Baron and Imrich [69]).

3. Graphs with a given group

The first book on graph theory was written by Konig in 1936. In

this book [p.5], Konig proposed the problem of determining all finite

groups r for which there exists a graph G such that A(G) = r. Two years

later, this problem was solved by Frucht [38] who proved that every

finite group has this property. In this section we shall present a

proof of Frucht's theorem and mention a few further development of this

problem. Much material of this section are taken from Behzad and

Chartrand [71; p.173-179]. The survey papers by Babai [81] and Holton

[76] are recommended for further information on this topic.

With every finite group r = {¢1,...,¢p}, we can construct a

complete symmetric digraph D = D(r) (a complete symmetric digraph D is a

digraph such that for any two vertices u and v of D, both (u,v) and (v,u)

are arcs of D) having vertex set V(D) = }. Each arc 0l4 J)

of D is labelled (i.e. coloured with colour i An element

a c A(D) is said to be colour-preserving if the arcs and (a(4i),

a(4.)) have the same colour for every arc (Oi,4 ) of D. It is clear

that the set of colour-preserving automorphisms of D forms a subgroup of

A(D).

Lemma 3.1 Every finite group r is isomorphic to the group of colour-

preserving automorphisms of D(r).
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Proof. Let r = } where is the identity. For i =

1,2,...,p, define a
i

: r + r by ai(m) _ im for all in. The label of an

arc (¢r,+s) is the same as that of since

(Yr)-1(Ys) .
Hence each a i is a colour-preserving automorphism of

D(r). Also, ai # aj for i # j.

We now show that if a is a colour-preserving automorphism of D(r),

then a = ai for some i = 1,2,...,p. Suppose a(41) _ 4i. For each

m # 1, let a(4 ) _ +j(m) . The label of (¢l,4m) is Im, therefore the

label of 00 1),a0m)) is 4m also, i.e. j(m) _ fm. Hence a(im) _

i+m and a = ai.

Finally, we prove that + ai defines a group isomorphism. It

is clear that ii is an injection. It remains to show that 4' is a group

homomorphism. Let ifj = 4ik. Then for each 4m a r, ai j(4'm)

ai(aj+m) = ai0 j4m) 4'i(4'j4m) _ (Yj)4'm = Ym = ak(4'm). Thus

*(Y j) _ j).

We shall now apply the above lemma to construct a graph G such that

A(G) is isomorphic to a given finite group r = p} where

l is the identity. For Irl = 1 or 2, we take G = K1 or K2. Hence we

assume that Irl > 3. We first construct the complete symmetric digraph

D(r). Now by Lemma 3.1, the group of colour-preserving automorphisms of

D(r) is isomorphic to r. We next transform the digraph D(r) into a

graph G in the following way. Suppose is an arc of D(r) which
J

is labelled
4' 14,

4'k. We delete this arc and replace it by a path

4'i, uij, vij, 4j. At the vertex uij we add a new path Pij of length

2k - 4, and at the vertex vij a new path Qij of length 2k - 3. This

operation is performed with every arc of D(r). The addition of the

paths Pij and Qij in the formation of G is, in a sense, equivalent to

the preservation of direction of arcs of D(r). Since every colour-

preserving automorphism of D(r) gives rise to an automorphism of G, and

conversely, we have the following theorem.

Theorem 3.2 (Frucht's theorem) For any finite group r, we can construct

a graph G such that A(G) = r.
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Remarks.

1. The number IGI of vertices of the graph G given in the proof of

Theorem 3.2 is excessive. For instance, if r is a group of order 3,

then IGI given in the proof of Theorem 3.2 is 33. However, it can be

shown that 9 is best possible for the group of order 3 (see Ex.3.3(1)).

(For discussions on the minimum order of a graph G such that

A(G) = r , see Sabidussi [59]. For results on upper and lower bounds of

the order of G such that A(G) r, see Babai [81].)

2. Many people have constructed other types of graphs G such that

A(G) = r where G satisfies some additional properties. Examples are as

follows:

(i) For any finite group r, there exist infinitely many cubic graphs G

such that A(G) = r (Frucht [49]).

(As mentioned in Babai [81], there are some gaps in the original

proof. for an alternate proof see Lovasz [79; Chap.2, Problem 8]. This

result has been further generalized by Sabidussi [57].)

(ii) Given a finite group r , and integers n, X, c such that

3 < n < 5, 2 < X < n, 1 < c < n , there exist infinitely many graphs G

which are regular of degree n, have chromatic number X, connectivity c,

and are such that A(G) = r (Izbicki [57,59]).

3. The result of Theorem 3.2 is sometimes called the abstract finite

group version of Konig's question. Some authors also considered the

permutation group version of Konig's question: "For which permutation

group r does there exist a graph G such that A(G) a r, where = means

that A(G) and r are isomorphic as permutation groups?" It is obvious

that not all permutation groups (for instance, the cyclic group of order

3) are isomorphic with A(G) as permutation groups, for some graph G. We

mention some results here.

(i) Suppose r = rl X r2 (the direct product of r1 and r2) or r = An,

where r1 is the cyclic group generated by (1,2,...,n), r2 is any

permutation group on {0,1,2,...,m} and An, for n > 2, is the alternating

group. Then there is no graph G with A(G) a r (Kagno [46,47,55]; see

also Chao [64]).

(Some of the above results have been generalized by Alspach [74].)
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(ii) Suppose r is the cyclic group generated by

(xnl,xn2,...,xnm), m > 5, n > 2 or (ul) ... (um) (vl,vi)...(vn,vn),

n > 1. Then there exists a graph G such that A(G) = r (Mohanty,

Sriharan and Shukla [78]).

4. Cameron [80b] proved if r is a finite group and c(r) is the class of

graphs G for which r is a subgroup of A(G), then there is a rational

number a(r) with 0 < a(r) < 1 such that the proportion of graphs of

order p in c(r) which satisfy r = A(G) tends to a(r) as p +

Moreover,

(i) a(r) = 1 if and only if r is a direct product of symmetric

groups;

(ii) if r is abelian, then a(r) = 0 or 1;

(iii) the values of a(r) for metabelian groups r are dense in the

interval [0,1].

Exercise 3.3

1. Let r be a group of order 3. Construct a graph G having 9 vertices

such that A(G)z! r. Show that 9 is best possible.

2. Construct a cubic graph G such that IA(G)I = 1.

3+. Prove that for any finite group r and any integers n and x where

n > 3 and 2 < X < n, there exist infinitely many graphs G such that

A(G) = r , x(G) = x, and G is regular of degree n (Izbicki [60]).

4+. Prove that for any infinite group r, there exists a connected graph

G such that A(G) = r (Sabidussi [60]).

5. Prove that if r is a group of order n > 6, then there exists a

graph G having at most 2n vertices such that r = A(G) (Babai [74]).

4. Vertex-transitive graphs

We first present a standard construction of VT-graphs (vertex-

transitive graphs) due originally to Cayley [1878]. This construction

is similar to, but more general than, the construction of the complete

symmetric digraph D(r) given in the previous section.
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Suppose r is a group and s s r is such that the identity 1 t S and

S-1 =
{x-1

I x e S} = S. The Cayley graph G = G(r,S) is the simple

graph having vertex set V(G) = r and edge set E(G) _ {{g,h}
I

g-1h a S}.

(In this section, in order to avoid confusion between the edge joining

two vertices g and h with the group element gh, we shall write the edge

joining two vertices g and h as {g,h}.) From this definition, it is

obvious that a Cayley graph G(r,S) is (i) complete if and only if

S = r* - r - {1}; (ii) connected if and only if S generates r. For more

similar necessary and sufficient conditions of various properties of

Cayley graphs G(r,S) in terms of S, the readers may consult Teh and Shee

[76].

Theorem 4.1 The Cayley graph G = G(r,S) is vertex-transitive.

Proof. For each g in r we define a permutation 0g of V(G) = r by the

rule 0g(h) = gh, h c r. This permutation 0g is an automorphism of G,

for {h,k} a E(G) > h-1k c S > (gh)-1(gk) e S > {0g(h).mg(k)} a E(G).

Now for any h, k e r, -1 (h) _ (kh 1)h = k . Hence G is vertex-

transitive.
kh //

The following is an example of a vertex-transitive graph which is

not a Cayley graph.

Example The Petersen graph is vertex-transitive but it is not a Cayley

graph.

Proof. It is clear that the diameter of a Cayley graph G = G(r,S) is

the smallest positive integer n such that

r= s u s2 U ... U Sn

where S2 = {hk I h, k e S} and Si = Si-1S for i > 3. The diameter of

the Petersen graph is 2. We now show that all the Cayley graphs of

order 10 having degree 3 are of diameter greater than 2 and so none of

them is the Petersen graph.

There are two groups of order 10. The first one is the cyclic

group Z10 and the second one is the dihedral group DS. The group

operations here are additions and we replace S-1 by -S.
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Case 1. r = Z10 = {0,1,...,9}.

Since -S = S and ISI = 3, 5 e S and S can only be one of the

following four sets

S1 = {1.5,9), S, = {2,5,8), S3 = {3,5,7}, S4 = {4,5,6}.

Now ISi + SiI = 5 for each i = 1,2,3,4. Thus the diameter of G is

greater than 2.

Case 2. r = D5 = {O,b,2h,3b,4b,a,a + b,a + 2b,a + 3b,a + 4b} where

2a = 0, 5b = 0 and b + a = a + 4b.

In this case a, a + b, a + 2b, a + 3b and a + 4b are the only

elements of order 2 in r. Hence S can only be one of the following

three types of sets

S1 = {a + jb,b,4b}, j = 0,1,2,3,4

S2 = Is + jb,2b,3b}, j = 0,1,2,3,4

S3 = (a + j1b,a + j2b,a + j 3b} , 0 < j1 < j 2 < j 3 < 4.

It can be verified that ISi + SiI = 5 for each i = 1,2,3. Thus the

diameter of G is greater than 2 also.

Although not every VT-graph is a Cayley graph, every VT-graph can

be constructed almost like a Cayley graph. This result (Theorem 4.3)

was due to Sabidussi [64]. We shall apply the following theorem to

prove Theorem 4.3.

Theorem 4.2 Let H be a subgroup of a finite group r and let S be a

subset of r such that S-1 = S and S 0 H = m. If G is the graph having

vertex set V(G) = r/H (the set of all left cosets of H in r and edge set

E(G) _ {{xH,yH} x 1y e HSH}, then G is vertex-transitive.

Proof. We first show that the graph G is well-defined. Suppose

{xh,yH} c E(G) and x1H = xH, y1H = yH. Then xl = xh, y1 = yk for some

h, k e H. Now x ly a HSH => (xh)-l(yk) c HSH xilyl c HSH '

{x1H,y1H} a E(G). Hence the graph G is well-defined.

Next, for each g e r we define a permutation tPg of V(G) = r/H by

the rule : *g(xH) = gxH, xH a r/H. This permutation 4g is an
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automorphism of G, for {xh,yH} a E(G) > x-ly a HSH > (gx)-l(gy) a HSH

{gxH,gyH) a E(G) > {t+g(xH),*g(YH)} a E(G).

Finally, for any xH, yH a t/H, 4 -l (xH) = yx l(xH) = yH. Hence C

is vertex-transitive. yx

The graph G constructed in Theorem 4.2 is called the group-coset

graph P/H generated by S and is denoted by G(r/H,S).

Theoreu 4.3 (Sabidussi's representation theorem) Let G be a vertex-

transitive graph whose automorphism group is A. Let H = Ab be the

stabilizer of b e V(G). Then G is isomorphic with the group-coset graph

G(A/H,S) where S is the set of all automorphisms x of G such that

{b,x(b)} a E(G).

Proof. It is easy to see that S-1 = S and S 11 H = 4'. We now show that

it : A/H + G given by ir(xH) = x(b), where xH a A/H, defines a map.

Suppose xH = yH. Then y = xh for some h e H > n(yH) = y(b) _ (xh)(b)

x(h(b)) = x(b) = a(xH).

We next show that n is a graph isomorphism :

n is one-to-one : Suppose n(xH) = n(yH). Then x(b) = y(b) ==> y-lx(b) _

b > y-lx e H y a xH > yH = xH.

it is onto : Let c be a vertex of G. Since G is vertex-transitive, there

exists z in A such that z(b) = c. Thus n(zH) = z(b) = c.

it preserves adjacency of vertices : {xH,yH} e E(G(A/H,S))

x-ly a HSH 4 x ly = hzk for some h, k e H, z e S 4-> h-lx lyk-1 = z <_>

{b,h-lxlyk-l(b)} a E(G) 4> {b,x ly(b)} C E(G) {x(b),y(b)} e E(G)

{n(xH),n(yH)} a E(G).

Let A be the automorphism group of a vertex-transitive graph G. We

know from a result mentioned in §2 of Chapter 1 that any two stabilizers

Ab and Ac (b, c e V(G)) are conjugate in A. Hence Ab is a normal

subgroup of A if and only if Ab = {1}, where 1 is the identity of A.

Thus the group-coset graph G(A/H,S), where H = Ab, is a Cayley graph if

and only if Ab = {1}, i.e. if and only if the action of A on V(G) is

regular.
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With the above motivation, we define the following term: Given a

finite group r, if there exists a vertex-transitive graph G such that

A(G) = r and A(G) acts regularly on V(G), then G is called a graphical

regular representation (GRR) of t, and r is said to have a graphical

regular representation. We now prove the following theorem which is due

to Chao [64] and Sabidussi [64].

Theorem 4.4 Let G be a vertex-transitive graph such that A(G) is

abelian. Then A(G) acts regularly on V(G) and A(G) is an elementary

abelian 2-group.

Proof. We first show that A(G) acts regularly on V(G). Suppose

g,h c A(G), and g fixes v e V(G). Then g(h(v)) = gh(v) = hg(v) = h(v)

and so g fixes every vertex of G, because G is vertex-transitive. Hence

g = 1, the identity of A(G).

Now, since A(G) acts regularly on V(G), G is isomorphic with the

Cayley graph G(A(G),S). Also, as A(G) is abelian, ' : g + g-1 is an

automorphism of A(G), and it fixes S setwise. Hence, by Ex.4.4(2) and

the fact that A(G) acts regularly on V(G), g = *(g) = g-1 for every

g in A(G) and so G is an elementary abelian 2-group.

It has been proved that the group (Z2)n has a GRR if and only if

n = 1 or n > 5 (see McAndrew [65], Imrich [69,70] and Lim [78]). Hence,

we have

Theorem 4.5 An abelian group r has a GRR if and only if r = (Z2)n for

n = 1 or n > 5.

It is clear that the cyclic group of order 3 has no GRR. The

following interesting question arises naturally :

Which finite group r has a GRR?

Watkins [71] proved the following theorem.

Theorem 4.6 For any generating set S of a group r (1 * S, s-1 = S and

r = <S>), if there exists a nontrivial group automorphism with

k(S) = S, then r has no GRR.
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This follows from Ex.3.4(2). Watkins conjectured that for finite

groups r the converse of Theorem 4.6 is also true. Accordingly, he

defines two classes of groups :

class I : Groups which have GRR's.

class II : Groups which have the property that any of its generating

subsets is fixed by a nontrivial group automorphism.

As a consequence of Theorem 4.6, the two classes of groups are

disjoint and Watkin's conjecture can be rephrased by saying that the

union of class I and class II includes all finite groups.

A series of papers by Imrich, Nowitz and Watkins has been devoted

to the resolution of the above conjecture. A complete answer to this

conjecture is given by the following two theorems. These two theorems

are deep and their proofs are difficult and long and therefore we refer

the readers who are interested in this topic to their original papers.

Theorem 4.7 (Hetzel [76]) Every finite, non-abelian soluble group has

a GRR except it is one of eight "exceptional groups".

Theorem 4.8 (Godsil [80]) Every finite non-soluble group has a GRR.

Combining Theorems 4.7 and 4.8, we have

Theorem 4.9 The union of class I and class II includes all finite

.groups

Finally we give a representation theorem of symmetric graphs.

Theorem 4.10 (Teh and Chen [70])

(i) Let H be a subgroup of a finite group r, 1^t u e r\ H and let

S = {u,u 1}. Then the group-coset graph G = G(r/H,S) is symmetric.

(ii) Conversely, let G be a symmetric graph whose automorphism group

is A, and let H = Ab be the stabilizer of b e V(G). Then G is

isomorphic with the group-coset graph G(A/H,S) where S - {u,u-1} and

u e A is such that {b,u(b)} a E(G).
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Proof. (i) By Theorem 4.2, G is vertex-transitive and thus we need

only to show that if {H,xH}, {H,yH} a E(G), then there exists an

automorphism 4' of G such that 4'{H,xH} = {H,yH}.

Let v = u or u-1. Now {H,xH},{H,yH} a E(G) > x, y e HSH. We

consider two cases.

Case 1. x = avb, y = cvd, where a, b, c, d e H.

In this case, let g = ca-1. Then 4g(H) - gH = H and

g(xH) = gxH = yH.

Case 2. x = avb, y = cv-ld, where a,b,c,d a H.

In this case, let g = cv la1. Then 4g(xH) = gxH = H and

rg(H) = gH = yH.

In either case, the automorphism
4'g

of G carries {H,xH} to {H,yH}.

(ii) By the proof of Theorem 4.3, we know that n : A/H + V(G)

given by 1r(xH) = x(b) is a bijection and {xH,yH} a E(G(A/H,S)) =>

{n(xH),ir(yH)} a E(G). It remains to show that {n(xH),n(yH)} a E(G) >

{xH,yH} a E(G(A/H,S)). Now {w(xH),n(yH)} e E(G) > {x(b),y(b)} e E(G)

> {b,x-1y(b)} a E(G). Since G is edge-transitive, there exists g e A

such that g{b,u(b)} = {b,x ly(b)}.

We consider two cases.

Case 1. g(b) = b and gu(b) = x-ly(b).

In this case, g, y lxgu a H. Hence y lxgu = h for some h e H and

so x 1y = guh-1 a HSH.

Case 2. gu(b) - b and g(b) = x-ly(b).

In this case, gu, ylxg e H. Hence ylxg = guh for some h e H and

so y-lx a HSH.

Hence, in either case, {xH,yH) a E(G(A/H,S)).

Exercise 3.4

1. Show that the set of all permutations
4'g

of r in the proof of

Theorem 4.1 forms a group r1 which is isomorphic with r and is a

subgroup of the group of automorphisms of G(r,S).
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2. Let G = G(I',S) be a Cayley graph. Suppose n is an automorphism of

the group r such that n(S) = S. Prove that n, regarded as a

permutation of V(G), is a graph automorphism fixing the vertex 1

where 1 is the identity of r. Show that the converse need not be

true.

3. Prove that the group-coset graph G(r/H,S) is complete if and only

if HSH = P , H.

4*. Is it true that every connected, vertex-transitive graph has a

Hamilton path and every connected Cayley graph is Hamiltonian?

(Lovasz [70])

5. Let G = G(r,S) be a Cayley graph and let H be a subgroup of r.

Show that

(i) if H n s = 4, then x(G) t IrI/IHI; and

(ii) if H = r, ,,s, then x(G) = IrI/IHI (Teh [66]).

6. The a-product (6-product) of two graphs G and H is the graph

G xa H (G xs H) with vertex set V(G) x V(H), in which (x,y), (u,v)

C V(G) x V(H) are adjacent if and only if xu a E(G) and yv a E(H)

(either x - u and yv a E(H) or y = v and xu a E(G)). Prove that

the a-product and the B-product of two vertex-transitive graphs G

and H are vertex-transitive (Teh and Yap [64]).

(There are many methods by which we can construct other

vertex-transitive graphs from a give collection of vertex-

transitive graphs. For more details, see Teh and Yap [64].)

7+. A digraph D is regular if the in-degree and the out-degree of all

the vertices of D are equal.

Let Q be a quasi-group and let S - Q. The quasi-group digraph

D = G(Q,S) is constructed as follows:

V(D) = Q, E(D) = {(x,xa) I x e Q, a e S} .

Prove that every finite quasi-group digraph is a regular

digraph and every finite regular digraph is a quasi-group digraph

(Teh [69]).

8. Let G be a vertex-transitive graph. Prove that if A(G) contains a

transitive ahelian subgroup, then any two vertices in C are

involuntory, i.e. for any two vertices u and v in G, there exists
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a e A(G) such that a(u) = v and a(v) = u (Bohdan [75]).

5. Vertex-transitive graphs of prime order

Cayley graphs G(Zn,S) are usually called circulant graphs. The

main objectives of this section are :

(1) to prove that every VT-graph of prime order p is a circulant graph

G(Zp,S);

(2) to find the automorphism group of the circulant graph G(Zp,S); and

(3) to enumerate the circulant graphs G(Zp,S).

Theorem 5.1 (Turner [67]) If G is a vertex-transitive graph of prime

order p, then it is a circulant graph.

Proof. Let V(G) {uo, .. , up-1}, A = A(G) and let H be the stabilizer

of u0. Suppose i e A is such that 4i(u0 ) = ui. Then IAI =

IHIIOrb(u0)I = pIHI . Thus pikAI and by Sylow's theorem, A contains a

subgroup K = {1,n,...,ap-1} of order p. Rename the vertices

{u0,...,up-1} as {v0,....vp-1} so that n(vi) = vi+1, 0 t i t p - 2

and n(vp_1) = vo. Suppose {vo,vl} e E(G). Then {v.,v2i} =
ai{vo,vi}

(by definition, ni{vo,vi} = {ni(v0), ni(vi)}), {v2i'v31}
=

1T l{vi1v21},

.... {v(P-1)i'vo} = ai{v(p-2)i'v(p-1)i} a E(G). Thus voviv21...

v(p-1)ivo forms a cycle in G. If we write vi as i, and let S =

{i I {vo,vi} e E(G)}, then G is the circulant graph G(Zp,S).

We now use Burnside's theorem on transitive permutation groups of

prime degree p to determine the automorphism group of VT-graphs of prime

order p.

Let p be an odd prime, let Zp be the field of integers modulo p,

and let ZP be the multiplication group of nonzero elements of Zp. Since

Zp is cyclic of order p - 1, it has, for each divisor n of p - 1, a

unique subgroup of order n. A proof of the following theorem can be

found in Passman [68;p.53].

Theorem 5.2 (Burnside) Let r be a transitive permutation group of

prime degree p on a set B. Then either r is doubly transitive or B can
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be identified with the field Zp in such a way that

r c {Ta,b I a e Z*, b c Zp} = T

where Ta,b is the permutation of Zp which maps x to ax + b.

(Note that T forms a group under the operation Ta,b
, Tc,d = Tac,b+ad')

The following theorem was implicit in the work of Sabidussi [64].

The proof given here is due to Alspach [73].

Theorem 5.3 Let G = G(Zp,S) be a VT-graph of prime order p. If S =

or S = Z*p, then A(G) = Zp, the symmetric group of degree p, otherwise

A(G) = {Ta,b I a s H, b e Z**}

where H = H(S) is the largest even order subgroup of Z*p such that S is a

union of cosets of H.

Proof. Suppose A(G) is doubly transitive on V(G). Then it is not

difficult to show that S = m or S = Z*p. If S = or S = Z*p, it is

clear that A(G) = Ep.

Suppose A(G) is not doubly transitive on V(G). Then by Burnside's

theorem,

A(G) {Ta,b
I

a e Z*p, b e Zp} = T.

It is clear that

J = {a I Tao C A(G)o}

where A(G)o is the stabilizer of 0, is a subgroup of even order of Z*p

(Note that Ta,o e A(G)o => T_a o e A(G)o.) such that JS = {js I j e J,

s e S} = S. Hence A(G)0 E {Ta,o I a C H}. In fact, since each Ta,o'

a C H, maps adjacent vertices to adjacent vertices, we have

A(G), ={Tao I aeH}.

Finally, since G is vertex-transitive,

A(G) = A(G)0 U T1,1 A(G)0 U ... U T1.P-lA(G)0

= IT I a e H, b e Z }.
a,b p
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Corollary 5.4 If G = G(ZF,S) and (p-1,ISi) = 2, then A(G) = Dp, the

dihedral group of degree p.

Proof. Since H is a subgroup of Z* and S is a union of cosets of H,
IHIp

must divide (p-1,ISI), the g.c.d. of p - 1 and ISI. Hence, if (p-1,ISI)

= 2, then IHI = 2 and IA(G)I = 2p. Thus A(G) = Dp.

A graph G is said to be symmetric if G is both vertex-symmetric and

edge-symmetric. The following result was conjectured by Turner [67] and

proved by Chao [71]. The proof given below is due to Berggren [72].

Theorem 5.5 Let p be an odd prime. The graph G with p vertices, each

having valency n > 2, is symmetric if and only if G = G(Zp,H) where H is

the unique subgroup of Zp of order n.

Proof. Suppose G = G(Zp,H) where H is the unique subgroup of Z* of even

order n. Then for any {x,y}, {u,v} e E(G), there is h e H such that

(y - x)h = v - u. Let b e Zp be such that yh + b = v. Then Th,b is an

automorphism of G such that Th,b{x,y} _ {u,v}.

Conversely, suppose G is symmetric. Then C = G(Zp,S) for some S

Zp. By the proof of Theorem 5.3, S = Hsl U ... U Hsr where H is the

largest even order subgroup of Zp such that S is a union of cosets of H.

If r > 2, then there is Th,b a A(G), h e H, that maps the edge

{O,sl} to the edge {O,s2}. In case Th b(0) = 0, we have b = 0 and hs1 =

s2, from which it follows that Hsl = Hs2, a contradiction. In case

Th,b(O) = s2 and Th,b(sl) = 0, we have (-h)sl - s2, from which it

follows that Hsl = Hs2 again. Hence S = Hsl for some sl a S.

Finally, it can be shown that n : x + xs-I is an isomorphism from

G(Zp,S) to G(Zp,H).

Remark. By Corollary 1.2, it would be enough to assume that in Theorem

5.5, G is regular and edge-symmetric.

Suppose G = G(Zp,S) is a circulant graph. The set S is called the

symbol of G. Two symbols S and S' are equivalent if there exists a

positve integer q < (p-1)/2 such that S' = qS = {qs I s e S }. Since
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i e S implies that p - i e S, in practice, we need only to write out the

elements i of S such that i < (p-1)/2.

Theorem 5.6 (Turner [67)) Suppose p is a prime. Two circulant graphs

G = G(Zp,S) and G' = G(Zp,S') are isomorphic if and only if their

corresponding symbols S and S' are equivalent.

Proof. Suppose it : G' + G is an isomorphism. Then A(G') = w-
1
A(G)n.

By Theorem 5.3 and Sylow's theorem, both A(G') and A(G) have a

unique subgroup K of order p. Hence K = n-1Kn. Now by multiplying it by

an element in K (if necessary), we may assume that it fixes the vertex

0. Thus n carries S to S'. However, by Theorem 5.3, any automorphism

of G fixing the vertex 0 has the form z + qz for some q e Z*. Since qS

(p - q)S, we may further choose q so that 1 < q < and qS = S'.

Theorem 5.6 shows that to count the number of non-isomorphic VT-

graphs of prime order p, it suffices to count the number of non-

equivalent symbols. The cycle index of the cyclic group Cp is given by

Z(Cp; x1, x2, "" xm) =

m

Y (d)xm/d
d m

where m = (p-1)/2 and +(d) is the Euler 4-function. Now Polya's Theorem

on Pattern Counting says that the enumerating polynomial for the

circulant graphs of prime order p is given by

m

where the coefficient of xi is the number of non-isomorphic copies of

size i.

Table of number of non-isomorphic VT-graphs of prime order p.

Prime Enumerating polynomial

Total number

of graphs

3 1+x3 2

5 1+x5+x10 3
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7 1+x7+x14+x21 4

11 1+x11+2x22+2x33+x44+x55 8

13 1+x13+3x26+4x39+3x52+x65+x78 14

17 1+x17+4x34+7xS1+10x68+7x85+4x102+x119+x136 36

19 1+x19+4x38+10x57+14x76+14x95+10x114+4x133+x152+x171 60

Exercise 3.5

1-. Write out all the non-equivalent symbols of G(Z13,S) where ISI = 6.

2. Let G be a connected, edge-transitive graph having prime size q.

Prove that (i) if G is regular, then G = Cq; (ii) if G is not

regular, then G is a star Sq+i (Turner [671).

3. If S = {1,2,3,5,8,10,11,12) and G = G(Z13,S), find A(G).

4. Let G = G(Zp,S) be a VT-digraph of prime order p with symbol S (-S

need not be equal to S). Prove that if S or Z*p, then

A(G) = {Ta,b I a e D(S), b e Zp}

where D(S) is the largest subgroup of Z** such that S is a union of

cosets of D(S) (Note that D(S) need not be of even order here.)

(Alspach [73]; Chao and Wells [73]).

6. Auto-extensions

Vertex-transitive graphs, when drawn with a high degree of space

symmetry, look very beautiful. Suppose we now have a graph G which is,

in general, not vertex-transitive. Can we extend G to a (finite)

vertex-transitive graph H so that G is a section graph (an induced

subgraph) of G? From an artist's point of view, this is an interesting

problem. The answer to this problem is in the affirmative and the main

objective of this section is to introduce several methods for

constructing them.

We say that a graph H is an auto-extension of a graph G if H can be

decomposed into a collection of section graphs G1, G2, ... such that
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each Gi is isomorphic with G, for any i # j, Gi and G3 have at most one

vertex in common, and each edge of H lies in one Gi.

Example Each of the graphs in the second row of Fig.3.2 (note that the

size of these graphs have been reduced considerably) is an (infinite)

auto-extension of the graph given above it.

Figure 3.2

Theorem 6.1 (Ang and Teh [67]) Every finite graph G can be auto-

extended to a finite Cayley graph which preserves the chromatic number.

Proof. Let V(G) = {vo,vl,...,vn}, X(G) = m and let Z2m be the group of

integers under addition modulo 2m. It is clear that

H = {(al,a2,...,an) I ai a Z2m, i = 1,...,n}

(the direct sum of n copies of Z2m) is an abelian group under component-

wise addition. We shall now choose a suitable set S H such H = G(H,S)

is an auto-extension of G.

We first identify vo,vl,....,vn with (0,0,...,0), (1,0,...,0),

(0,1,0,...,0),...,(0,0,...,0,1) respectively. The set S is now defined

as the set of all elements s e H such that s = vi - vj where vivj e

E(G). From this construction, it is clear that for each h e H, G + h is

a section graph of the Cayley graph H and G + h °_ G.

We now show that for any two distinct elements a, b in H,

(G + a) n (G + b)I < 1. To see this, we first note that I(G + a) n
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(G + b)I = IG n (G + b - a)I. Thus, suppose G n (G + c) # 4 for some

c = (cl,...,cn) E H with ci # 0 and x = (x1,...,xn) e G n (G + c). If

x = vo, then ci = -1 for this particular i, and cj = 0 for all j # i.

Thus, for every j J i, vj + c t G and IG n (G + c)I = 1. On the other

hand, if x = vi, i > 0, then vi = vj + c for some vj e G. Thus ci - 1,

ej = -1 and ck = 0 for all k # i,j. In this case, vk + c # G for any k

# j and thus IG n (G +c)I = 1 also.

Next, suppose xy a E(H). Then x - y = vi - vj for some vi, vj e G

such that vivj E G. Thus x - vi = y - vj =h->x, y CG + h. Hence H

is an auto-extension of G.

Finally, we prove that x(H) = m = x(G).

Let m be an m-vertex-colouring of G such that 4(vo) = 0 and 4(vi) e

(0,...,m-1}. We shall extend i to an m-vertex-colouring 4 of H. For

this purpose, we consider H as a module over the ring Zm {0,1,...,m-1}

and for each a = (a1,...,an) e H, we define

i(a) = al$(vl) + ... + an+(vn)

where addition is taken modulo m.

We claim that for any two adjacent vertices a and b in H, *(a) #

ip(b). Suppose otherwise. Let a = (al,...,a0), b = (b1,...,bn). Then

Jbj+(vj). Now ab E E(H) > a - b = vi - vj where vivj e

E(G). Hence a = b + vi - vj, from which it follows that ai = bi + 1,

aj = bj - 1, and ak = bk for all k 0 i, J. Consequently, we have

(bi + 1)+(vi) + (bj - 1)$(vj) = bi4(vi) + bji(vj) > $(vi) = (vj),

contradicting the assumption that vivj a E(G).

In general, IHI = (2m)n is too big. For instance, if G = P3 is a

path on 3 vertices, then IHI = 16. However, it is clear that C6 (a

cycle of order 6) is also an auto-extension of P3 which preserves the

chromatic number. Thus it is interesting to look for other extensions H

such that the order of H is smaller. (Note that in the construction of

H given in Theorem 6.1, if m > 3, Z2m can be replaced by Zm so that IHI

is considerably smaller.) An approach in this direction is given in

Theorem 6.3 below.

We need the following definition and lemma. Let G be an additive
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group. A non-empty subset S of G is said to be parallelogram-free if

for every s1, s2, $3, s4 a S, sl - s2 = s3 - s4 # 0=> sl = s3 and

s2 = s4.

Lemma 6.2 If S is a parallelogram-free subset of a group G, then for

any distinct elements x, y in G, I(x + S) (1 (y + S)I < 1.

Proof. Suppose I(x + S) 11 (y + S)I > 2. Let u,v e (x + S) fl (y + S),

u #v. Then u=x+sl =y+s2, vx+s3=y+s4 for some
s1,s2,s3,s4 a S. Hence -x + y = sl - s2 = s3 - s4 # 0. Since S is

parallelogram-free, sl = s3 and s2 = s4, from which it follows that u =

v, a contradiction.

Theorem 6.3 (Tan and Teh [69]) Every finite graph C can be auto-

extended to a circulant graph of prime order.

Proof. Let V(G) = {v1,...,vk} and let p be the smallest prime such that

p > 2k + 1. It is clear that

B = {0,1,3,7,...,21 - 1,...,2k-1 - 1}

is a parallelogram-free subset of Zr,.

Now for each x e Zp, we let Bx = x + B and we turn Bx into a graph

isomorphic to G by defining V(Bx) = Bx, and

{x + 21-1 - 1,x + 23-1 - 1} C E(Bx) if and only if vivj e E(G).

Next let H be the graph such that

V(H) = Zp, E(H) = U E(Bx).
xCZ

p

Then since B is parallelogram-free, for any two distinct elements x and

y of Zp, IBx n By1 < 1. Also by the definition of E(H) we know that

each edge of H lies in one Bx. Hence H is an auto-extension of G.

Finally we prove that H is a circulant graph. Suppose u and v are

adjacent vertices of H. Then u = x + 21-i - 1 and v = x + 2j-i - 1 for

some x e Zp and some indices i and j such that vivj a E(G). Hence

{x + 21-1 - 1, x + 2j-1 - 1} C E(Bx) > {w + x + 21-1 - 1,
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w + x + 2j-1 - 1} C E(Bw+x) for any w e Zp > the vertices w + u and

w + v are adjacent in H. Thus H is a circulant graph.

Remarks.

1. There are several generalizations of the constructions given by

Theorems 6.1 and 6.3, see for instance, Chen and Teh [79].

2. Shee and Teh [84] have constructed other types of extensions of a

finite graph to a finite vertex-transitive graph.

Exercise 3.6

1. Using the construction given in the proof of Theorem 6.1, find an

auto-extension of P3.

2. Prove that the converse of Lemma 6.2 is also true, i.e. if S is a

subset of a group G such that for any two distinct elements x, y in

G, I(x + S) n (y + S)I < 1, then S is a parallelogram-free subset

of G.

3. Let J be the graph obtained from C4 by joining two opposite

vertices. Determine S, where S is the symbol of the circulant-

graph G(Z17,S) which is an auto-extension of J constructed by the

method given in the proof of Theorem 6.3.

4. Prove that the graphs H constructed in Theorems 6.1 and 6.3 are

regular of degree 2e(G).

7. s-transitive cubic graphs

In this and the following sections we shall restrict ourselves to a

study of a few subclasses of the class of vertex-transitive graphs.

An s-path in a graph G is an (s+1)-tuple [u] = (uo, ul, ...,us) of

vertices of G with the property that uiui+l a E(G) for all i = 0,...,

s - 1 and ui # ui+2 for 0 < i < s - 2. A graph is s-transitive (s > 0)

if its automorphism group A(G) is transitive on the set of all s-paths

in G and is strictly s-transitive if it is s-transitive but not

(s+l)-transitive. For example, the complete bipartite graph of degree
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d > 2 is 3-transitive but not 4-transitive. If G is s-transitive, then

it is t-transitive for all 1 < t < s. From the definition, a VT-graph

is 0-transitive and a symmetric graph is 1-transitive. It is clear that

s-transitive graphs are vertex-transitive and that the converse is not

true in general.

Since every s-transitive graph is vertex-transitive, s-transitive

graphs are regular graphs. The only connected VT-graphs of degree < 2

are trivial s-transitive graphs. Hence we shall only confine ourselves

to the study of nontrivial s-transitive graphs.

The main theorem of this section is

Theorem 7.1 (Tutte [47]) Let G be a finite cubic graph. If G is

s-transitive, then s < 5.

The proof of this theorem is due to Tutte [47], with later

improvements by Sims [67] and Djokovic [72]. The following elegant

proof of this theorem is due to Weiss [73]. Before we prove this

theorem, let us first define some terminology.

Throughout this section, G = (V,E) is a finite, connected, cubic

graph which is strictly s-transitive. Let r = A(G) and let (x0,...,xr)

be an r-path in G. We set

r(x0,xl,...,xr) = r(x0) n ... n r(xr)

where r(xi) is the stabilizer of xi. We shall write RX if R is a group

acting on the set X. If E is a subgroup of r, then the centre of E is

denoted by Z(E). We shall also write E = 1 if £ _ (1) where 1 is the

identity.

Lemma 7.2 r(x0,...,x5) = 1 for every s-path (x0,...,x5) in G.

Proof. Let [x] = (xo,...,x5,x5+1) be an arbitrary (s+1)-path and let X

N(x5) - (x5_1). Suppose r(x0,...,x5)X is nontrivial. Since IXI = 2,

r(x0,...,x5) is transitive on X. Let [y] _ be another

(s+l)-path . Since G is s-transitive, there exists a c r mapping

to (x0,...,x5). Now, as a(ys+1) c X, we may suppose that

a(y5+1) = xs+1 by multiplying a with an appropriate element in
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r(x0,...,xs), if necessary. Thus r contains elements mapping [y] to

another (s+1)-path [x], which contradicts the assumption that G is not

(s+1)-transitive. We conclude that r(x0,...,xs)X = 1 and r(x0,...,x5) _

r(x1,...,xs+1).

Now let z be an arbitrary vertex of G. Since C is connected, there

exists a path (u0,...,ut) with u0 - x5 and ut = z. If u1 x5_1, then

r(x0,...,x5) = r(xl,...,xs,ul) as we have just shown. But then

r(xl,...,xs,u1) = r(x2,...,xs,u1,u2) and so on. Hence r(x0,...,x5) e

r(z). On the other hand, if u1 = x5_1, we extend [x] to an arbitrary

(2s-1)-path (x0,.... xs+1,xs+2,...,x2s_1). Then

r(x0,...,x5) = r(xl,...,xs+l) _ ... = r(xs-1,...,x2,-1)

= r(u1,u0,xs+1....,x25-1) = r(u2,u1,u0,xs+1,...,x25-2)

and so on; again r(x0,...,x5) E r(z). Since z is arbitrary, we have

r(x0,...,x5) = 1.

Lemma 7.3 Ir(x,y)I = 2s-1 for every 1-2ath (x,y).

Proof. Let (x0,xl,...,x5) be an s-path in G with x0 = x and x1 = Y.

Since r(x0,...,x5) = 1, r acts regularly on the set W of all s-paths in

G. Now r(x0,...,x5) c r(x0,...,xs-1) and IN(xs-1) - {xs-2)I = 2 imply

Ir(x0,...,xs-1)I = 2. Assume that Ir(x0,...,xs_i)I = 21 for 1 4 i <

s - 2. Then from r(x0,...,xs_i) e_ r(x0,...,xs-i-1), IN(xs-i-1) -

{xs-i-2)I - 2, and the fact that r acts regularly on W, we have

Ir(x0,...,xs-i-1)I/Ir(xo,...,xs-i)I = 2.

The result follows by induction. //

In the following, we use a(x,y) to denote the distance between two

vertices x and y.

Lemma 7.4 Suppose s > 2. Let xOxl e E and y e V. If a(xi,y) < 2 - 1

for i = 0 or 1, then

z(r(x0,x1)) = r(y).
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Proof. Let (u0,u1,...,us) be any s-path with either u0 = x0 and ul = x1

or u0 = x1 and ul = x0. It suffices to show that z(r(xo,xl)) E r(ui)

for all i < s/2. By Lemma 7.3, r(x0,x1) is a nontrivial 2-group. Hence

z(r(xo,xl)) # 1. Since r(u0,...,us) = 1, there exists t < s such that

z(r(xo,xl)) a r(u0,...,ut) but Z(r(x0,x1))-4 r(u0,...,ut+1)' Let a be

an element in Z(r(x0,x1)) but not in r(u0,...,ut+1) We have

r(u0,...,us-1) = ar(u0,...,us-1)al = r(a(u0),...,a(us-1))

= r(u0,...,ut,a(ut+1),...,a(us-1))

and so

r(u0,...,us-1) c r(us-1,...,ut,a(ut+i),...,a(u,-1)).

Since r(u0,...,us-1) # 1 and (us-1,...,ut,a(ut+1),.... a(us-1)) is a

2(s - t - 1)-path, by Lemma 7.2, 2(s - t - 1) < s - 1 and thus

s - 1 < 2t.

Lemma 7.5 If s is even, then s < 4.

Proof. Suppose s > 4. Let m = 2 - 1 and let (x0) ...,x3m) be an

arbitrary 3m-path in G. Let El = Z(r(xm_1,xm)), E2 = Z(r(x2m,x2m+1))

and E _ [E1,E21 = <aba-ib-1

I a E El, b e E2>. By Lemma 7.4, Ei e

r(xm,...,x2m) for i = 1,2. Hence E e r(x..... x2m). Suppose 2m < i

< 3m, a e El and b c E2. Then 3(x2m,a-l(xi)) = a(x2m,xi) < m and so

b e r(a-l(xi)) fl r(xi). Thus aba-lb-l(xi) = aba-l(b-l(xi)) =

ab(a-l(xi)) = a(a-l(xi)) = xi and abalb-l a r(xi) Similarly, aba-lb-l

e r(xi) for 0 < i < in. Consequently z e

By Lemma 7.3, r(xm_1,xm) is a nontrivial 2-group and so E1 # 1.

Let a # 1 be an element in El and let u e N(x0) - {xl}. By Lemma 7.4,

a e r(u,x0,...,x2m). By Lemma 7.2, 1. Hence

a o r(x2m+1). Now suppose E = 1. Then a centralizes E2. Let v C

N(x3m) - {x3m-1}' By Lemma 7.4 again, E2 a and

therefore E2 = aE2a l e r(a(x2m),...,a(x3m),a(v)) and thus

E2 c r(v,x3m,x3m-l,...,x2m,a(x2m+1),a(x2m+2),...,a(x3m),a(v)).

Since (v,x3m,x3m-1,..',x2m,a(x2m+1),a(x2m+2),....a(x3m),a(v)) is an
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s-path, E2 = 1, which is a contradiction. Hence E ¢ 1. Finally, since

E r(x0,...,x3m), it follows from Lemma 7.1 that 3m < s - 1, i.e.

s<4.

From now on, we assume that s is odd and we let n = (s - 3)/2.

Lemma 7.6 Let xy a E. Then for each (n+2)-path (x0,xl,...,xn+2) in G,

where {x0,x1} = {x,y}, Z(r(x,y)) 9E r(x0,...,'4i+2)'

Proof. Let r{x,y} be the stabilizer of {x,y}. Then r{x,y} acts

transitively on the set of all (n+2)-paths of the form (x0,xl,...,xn+2)'

Now since r(x,y) e r{x,y}, for every a e Z(r(x,y)), r(a(x),a(y)) =

ar(x,y)a-1 = r(x,y) a r{x,y}. Hence {a(x),a(y)} = {x,y}, from which it

follows that z(r(x,y)) a r{x,y}.

Next, suppose Z(r(x,y)) fixes [x] (x0,xl,...,xn+2). Then for any

[x'] = (x6,xl',...,xn+2) where {x0,x1} {x,y}, there exists b e r{x,y}

such that b[x'] [x]. Since g[x] = [x] and gb = bg, for every g e

Z(r(x,y)), g[x'] = gb-l[x] = b-lg[x] = b-l[x] _ [x']. Hence if

z(r(x,y)) fixes an (n+2)-path of the form (x0,xl,...,xn+2), then it

fixes every such (n+2)-path and so it fixes an s-path (x-n-l,xn'".'

x_1,x0,xl,x2,...,xn+2). However, since Z(r(x,y)) # 1, this contradicts

Lemma 7.2. Consequently Z(r(x,y)) I r(x0,xl,...,xn+2)'

Lemma 7.7 Let (x0,...,x3n) be a 3n-path and let a e Z(r(xn_l,xn)) with

a ¢ Then [a,b] e r(x0,...,x3n) for each b e

Z(r(x2n,x2n+1))'

Proof. By Lemma 7.4, if n < i < 2n, then a and b fix xi. If 0 < i < n,

then 3(b(xi),xn) = 3(b(xi),b(xn)) = 3(xi,xn) < n. Hence, by Lemma 7.4,

a fixes b(xi) and thus [a,b] fixes xi. (Note that [a,b] = a-lb-lab,

a lb-lab(xi) = a-lb-lb(xi) = a-l(xi) = xi.) If 2n < i < 3n, the same

argument applies. Hence [a,b] e r(x0,...,x3n).

Lemma 7.8 s < 7.

Proof. Let a be given as in Lemma 7.7. If [a,b] = 1 for every
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b e Z(r(x2n,x2n+1)), then Z(r(x2n,x2n+1)) = aZ(r(x2n,x2n+1))a-1 =

Z(r(x2n,a(x2n+1))). Let (v0,...,vn+2) be an (n+2)-path with (v0,v1,v2)

_ (x2n+l,x2n,a(x2n+1)) (Note that a(x2n+1) # x2n+1 by Lemma 7.6.)

Then Z(r(x2n,a(x2n+1))) a r(v0,...,vn+2) by Lemma 7.4. But

Z(r(x2n,x2n+1))E r(v0,...,vn+2) by Lemma 7.6. This contradiction shows

that [a,b] # 1 for any b e Z(r(x2n,x2n+1)) By Lemma 7.7, it follows

that r(x0,...,x3n) # 1 and hence 3n < s - 1, from which we obtain

s c 7.

I.emma 7.9 Suppose s = 7. If xy e E and f e Z(r(x,y)), then f2 = 1.

Also if (w1,...,w5) is any 4-path and d e r(w1,...,w5), then d2 = 1.

Proof. Let (w0,wl,w2,...,w6,w7) be a 7-path where w3 - x, w4 = y. By

Lemma 7.4, f e r(w1,w2,...,w6). Since G is cubic, f2 a r(w0,wl,...,w7)

= 1. Hence f2 = 1.

If (w1,...,w5) is any 4-path, let (w0,...,w7) be a 7-path extending

(w1,...,w5). By Lemma 7.6, there exists g e Z(r(w2,w3)) such that

dg a r(wl,...,w6). Again, since G is cubic, (dg)2 a r(w0,...,w7) = 1.

Hence (dg)2 = 1. Finally, from g e z(r(w2,w3)), g2 1,

d e r(wl,...,w5), and gd - dg, it follows that d2 =

To complete the proof of Theorem 7.1, now we need only to show that

s # 7. Suppose s = 7. Let (x0,...,x7) be a 7-path. Let b e

z(r(x4,x5)) with b r(xl) and c e Z(r(x5,x6)) with c ¢ r(x2). (Here we

apply Lemma 7.6.) Choose a e Z(r(x1,x2)) such that a ¢ r(z) where z is

given as in Fig.3.3. By Lemma 7.4, we have a(b(x1)) = b(xl). Now since

x0

0-

Figure 3.3

N(c(x2)) = {x3,z,z') and c(x3) = x3 (by Lemma 7.4), we also have
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c(b(xl)) = z or z'. Next, by Lemma 7.4 again, a fixes x3 and c(x2), and

thus a switches z and z' (because a ¢ r(z)). Hence d = cacab fixes x1.

(d(xl) - caca(b(xl)) = cac(b(xl)) = ca(z) or ca(z'). Suppose c(b(xl))

Z. Then d(xl) = ca(z) = c(z') = xl because c(b(xl)) = z and c2 = 1.

The case for c(b(xl)) = z' can be proved similarly.)

Next, by Lemma 7.4, b e r(x2,x3,x4,x5) and thus d(x2) - caca(b(x2))

= caca(x2) = ca(c(x2)) = c(c(x2)) = x2 because c2 = 1 (by Lemma 7.9).

Similarly, d(x3) x3. Hence d e r(xl,x2,x3,x4,x5) and so by Lemma 7.9,

d2 1. From d = cacab and the fact that b2 = 1 and a2 = 1, we obtain

dba = cac. Hence (dba)2 = (cac)2 = ca2c = c2 = 1.

Finally, since d c r(xl,x2) fl r(x4,x5), b e Z(r(x4,x5)) and

a e Z(r(xl,x2)), we have [d,b] - 1 = [d,a]. Thus d2(ba)2 = (dba)2 = 1

and so (ba)2 = 1 = [b,a]. Hence a e Z(r(x2)), because b c r(x2).

Choose g e r(x2) with g(x1) = x3. Since a e Z(r(xl,x2)), by Lemma 7.4,

we have a e r(y) for any vertex y such that a(xi,y) < 2, i = 1,2. Hence

a = gag-1 a gZ(r(xl,x2))g-1 = Z(r(g(xl),g(x2))) = z(r(x3,x2)) _

Z(r(x2,x3)). However, by Lemma 7.4 again, Z(r(x2,x3)) a r(z).

Consequently a e r(z), contradicting the choice of a. //

Remarks.

1. Examples of 5-transitive and primitive 5-transitive cubic graphs

can be found in Biggs [74;p.125]. An infinite family of strictly

(primitive) 4-transitive cubic graphs has been constructed by Wong [67].

2. J. H. Conway has constructed an infinite family of connected,

strictly 5-transitive cubic graphs (for details of construction, see

Biggs [74;419]).

3. The small 5-transitive cubic graphs known so far, in order of

magnitude have 30, 90, 234, 468 and 650 vertices. Recently Biggs [82a]

has constructed a 5-transitive cubic graph of order 2352. Biggs [82b]

gives a construction of 5-transitive cubic graphs from 4-transitive ones

which recovers Conway's result but the order of the graphs are smaller.

4. Gardiner [73] proved the following result which is similar to

Tutte's theorem : Let G be an s-transitive graph with s > 4. Suppose

deg G = p + 1, p an odd prime. Then s - 4, 5 or 7.
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5. Weiss [73] also proved a similar result which is stated as

follows : Let G be an s-transitive graph. If deg G - 1 + prn with p a

prime and r < p, then s < 7 and s # 6; if deg G = 1 + pr, r = 2m, m > 1,

p # 2, then s = 1.

6. Further results on s-transitive cubic graphs can be found from

Biggs [84), Biggs and Hoare [82], Biggs and Smith [71], Bouwer and

Djokovic [73], Djokovic (71,73,74), Djokovic and Miller [80], Gardiner

[76b], Miller [71] and Weiss [77,78).

7. Using the classification of the finite simple groups, Weiss [81]

proved the following : If G is a strictly s-transitive graph of degree

k > 2, then s < 5 or a = 7.

8. A graph G is said to be locally s-transitive if the stabilizer of

any vertex v acts regularly on the set of s-paths starting at v.

Certain results on locally s-transitive graphs have been obtained by

Bouwer [71] and Weiss [76b,79].

Exercise 3.7

1. Suppose G is a regular graph of degree at least three and the girth

of G is y. Prove that if G is strictly s-transitive, then

Y > 2s - 2.

2. Let G - (V,E) be the incidence graph of the Fano plane which is

depicted in Fig.3.4. (Here V consists of the seven points vl, v2,

v3, ul, u2, u3, w and the seven lines R1 = {vl,u3,v2}, R2 -

{v1,w,ul}, i3 - {vl,u2,v3}, R4 = {v2,w,u2}, R5 = {v2,ul,v3},

R6 = {v3,w,u3}, 17 = {ul,u2,u3); E consists of all the point-line

pairs {P,R} such that P lies on R.)

Figure 3.4.
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Show that G is 4-transitive but not 5-transitive.

3. Prove that if G is a finite, connected, cubic graph which is

strictly s-transitive, then for any x e V(G), IP(x)I = 3 x 2s-1 and

IFI = n x 3 x 2s-1 where r= A(G).

4. Let N = {1,2,3,4,5,6}. Let S be the set of all 2-element subsets

of N and T be the set of all partitions ablcdlef of N into three

2-element sets. Suppose G is the graph with vertex set V = S U T

and edge set {s,t} with s e S, t e T such that s is one of the

2-element subsets making up t. Prove that G is 5-transitive.

5. Prove that the odd graphs Ok are strictly 3-transitive for all k >

3 (Biggs [74 ; p.118]).

6. Let G be a strictly s-transitive graph and let u, v be two adjacent

vertices in G. Let Z be the subgroup of A(G) which fixes u and v

and all the vertices adjacent to either of them. Prove that E is a

p-group for some prime p (Gardiner [73]).

8. 4-ultratra'nsitive graphs

In the previous section we studied a class of highly symmetrical

graphs. In this section we shall study another such class of graphs.

The girth, the diameter and the automorphism group of a graph G are

denoted by y(G), d(G) and I' respectively. For a vertex x in G, we

denote

Ni(x) _ {z e G 12(x,2) = i}.

Thus N(x) = N1(x) is the neighbourhood of x. If G is regular of degree

(valency) k, we write deg G - k. The union of t disjoint copies of a

graph H is denoted by tH and the complete t-paritite graph having r

vertices in each partition is denoted by Ot = Or + Or + ... + Or and

thus 02 is the complete bipartite graph K r'

Suppose U e V(G). Let <U> be the subgraph of G induced by U. A

graph G is said to be ultrahomogeneous if every isomorphism from any

induced subgraph <U1> of G onto any induced subgraph <U2> of G can be

extended to an automorphism of G. If we restrict the above induced
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subgraphs <U1> and <U2> to the case IU1) - IU2I < k for some fixed

positive integer k, then G is said to be k-ultratransitive. Hence if G

is ultrahomogeneous, then it is k-ultratransitive for every k - 1, 2,

..., IGI. If G is k-ultratransitive for some k > 1, then it is (k-1)-

ultratransitive. A vertex-transitive graph is 1-ultratransitive. A

graph G is distance-transitive if for any x, y, u, v e V(G) such that

a(x,y) - a(u,v), there exists i e r such that u - *(x) and v - 4'(y).

Sheehan [74] and Gardiner [76a] characterized the class of finite

ultrahomogeneous graphs. Their theorem is as follows.

Theorem 8.1 If G is a finite ultrahomogeneous graph, then G is one of

the following :

(1) tKr for some t > 2, r > 1;

(ii) Or for some t > 2, r > 1;

(iii) C5;

(iv) L(K3,3), the line graph of K3,3.

Cameron [80] and Y. Gol'fand (see Cameron [83]) characterized the

class of finite 5-ultratransitive graphs. This class of graphs

coincides with the class of graphs given in Theorem 8.1 and thus the

result of Cameron and Gol'fand generalizes the result of Sheehan and

Gardiner.

We know that nontrivial 3-ultratransitive graphs are rank-3 graphs

(i.e. vertex-transitive graphs G which are not complete or null, such

that for each vertex x of G, the orbits of r(x) are (x), N(x) and

V(G) - (N(x) U {x})). The class of rank-3 graphs have been extensively

studied by many people, for instance, Hestenes [73], Hestenes and Higman

[71], Hubaut [75], and Smith [75a,75b] etc. From their results, we can

see that it is hard to characterize the class of finite 3-

ultratransitive graphs. The main purpose of this section is to give a

partial characterization of the class of finite 4-ultratransitive

graphs. These results are due to Cameron [80] and Yap [83].

The following theorem is not difficult to prove and we shall leave

it as an exercise.
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Theorem 8.2 Suppose G is a 2-ultratransitive graph. Then

(1) G is distance-transitive;

(ii) if G is connected, then d(G) < 2;

(iii) if G is not connected, then G = tKr, t > 2, r > 1;

(iv) if G is. connected and bipartite, then G = Kr r, r > 1.

The following theorem completely characterizes a special class of

finite 4-ultratransitive graphs. This theorem generalizes the

corresponding result of Theorem 8.1.

Theorem 8.3 Suppose G is a finite 4-ultratransitive graph. If G is

connected, not bipartite and Y(G) > 3, then G - C5.

Proof. Let k = deg G, x e V(G) and N(x) = {xl,x2,...,xk}. Let y e V(G)

be such that a(x,y) = 2 and let W = N(x)fl N(y) _ {xl,x2,...,xc}. If

k = c, it is easy to show that G = Kc c which is excluded by the

hypothesis. Hence k > c. Since Y(G) > 3, for every yl a N(y) - W, W

and N(yl) fl N(x) are disjoint subsets of N(x), each of cardinality c.

Hence

k > 2c (1)

Let m- IN2(x)I. Since N2(x) and N(x) form two orbits of G under

the action of r(x), by counting the number of edges joining the vertices

in N2(x) with the vertices in N(x) in two different ways, we have

me = k(k - 1)

We shall first prove that c = 1.

(2)

Suppose c > 2. Let B = N(xl) fl N(x2) (1 N(x3) and let b - IBI.

Since x e B, b > 1.

Let W1 - N(x2) fl N(x3) - B, W2 N(x3) f1 N(xl) - B and W3 =

N(xl) (1 N(x2) - B. Then IW11 = IW2I = IW3I - c - b. Let Xl - N(xl) -

(W2 U W3 U B), X2 = N(x2) - (W3 U W1 U B), X3 - N(x3) - (Wl U W2 U B),

a = {xl,x2,x3} and U = V(G) - (N(xl) U N(x2) U N(x3) U 8) (see Fig.3.5).
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X.

W1

Figure 3.5

0

U

Then (X1I = IX2I = IX31 =k-{2(c-b)+b} =k+b-2c#0.
Let z e X3. Then B and N(z) n N(xl) (1 N(x2) are disjoint subsets of

N(x1) n N(x2), each of cardinality b. Hence

c > 2b (3)

It is clear that A, B, W1, W2, W3, X1, X2, X3 and U are disjoint

subsets of V(G). Hence

IUI = (m+k+ 1) -{3+b+ 3(c - b) + 3(k + b - 2c)}

=m-2k+3c-b-2 (4)

Next since x4 a U, U # . Now B and U form two orbits of G under

the action of r(A). Hence, by counting the number of edges joining the

vertices in U with the vertices in B in two different ways, we have

b(k - 3) = (Uld (5)

where d > 1 is the number of vertices in B adjacent to a vertex u e U.

Hence

b(k-3)>m-2k+3c-b-2 (6)

We note that W1 and X1 form two orbits of G under the action of

r(x1,x2,x3). Let w1 a W1. Then since Y(G) > 3, N(x1) fl N(w1) a X1 and
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since IN(xl) fl N(wl)I = c, each vertex in W1 is adjacent to c vertices

in X1. Let xi a X1. Then N(xi) fl N(x2) fl N(x3) C- W1 and since

IN(xi) fl N(x2) fl N(x3)1 = b, each vertex in X1 is adjacent to b vertices

in W1. Hence

from which it follows that

c(c - b) = b(k + b - 2c) (7)

c2=b(k+b -c) (8)

Again, we note that W1 and U form two orbits of G udner the action

of T(A). Now since each vertex in W1 is adjacent to k - c - 2 vertices

in U and each vertex in U is adjacent to b - d vertices in W1, we have

(c - b)(k - c - 2) = IUI(b - d) (9)

From (5) and (9), we obtain

c(k - c - 2) = b(IUI - c + 1) (10)

From (8) and (10), we obtain

(k - c + b)(k - c - 2) = c(IUI - c + 1) (11)

Substituting (4) into (11) and using (2), we obtain

(b - 1)k=c2- 3c + 2b (12)

Substituting (8) into (12), we get

k=be+3c- b2 - 2b (13)

Substituting (13) back into (8), we get

c2 - (b2 + 2b)c + b2 + b (14)

from which we obtain (since c > 2b)

c=b2+b (15)

Hence, from (13), (15) and (2), we have

k = b3 + 3b2 + b (16)

and

m= b4+ 5b3+6b2-b- 1 (17)
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Thus

and

b(k - 3) = b4 + 3b3 + b2 - 3b

m - 2k + 3c - b - 2 = b 4 + 3b 3 + 3b 2 - b - 3

which contradicts (6). Consequently, c = 1.

Finally, suppose k > 3. Let zl a V(G) be such that zl (# x) e

N(x2) and zl ¢ N(y) (The existence of zl is guaranteed by the fact that

IN(y) fl N(x2)1 = c = 1 and k = deg G > 3.) and let z (# x,y) a N(xl).

Now <y,z,x> = 03 = <y,zl,x> and thus there exists 4' e 1'(y,x) such that

Vi(z) = z1. But {xl) = N(x) fl N(y), therefore 4(xl) = x1. However,

zl - 4'(z) a N(xl) and so IN(zl) fl N(x)I > 2, contradicting the fact that

IN(zl) f1 N(x)I - c - 1. Hence k = 2 and G = C5.

We shall next prove the following theorems which characterize

partially the class of finite, 4-ultratransitive, connected graphs G

having Y(G) = 3.

Lemma 8.4 Suppose V(G) = N(x) U N(y) for any edge xy in G. Then each

component of the complementary graph G of G is complete. In addition,

if G is regular, then G = Ot for some positive integers r and t.

Proof. Suppose yz, zx a E(G) and xy ¢ E(G). Then xy a E(G) and

z ¢ N(x) U N(y), which is a contradiction. Hence each component of G is

complete and G = 0= if G is regular.

Theorem 8.5 If G is vertex-transitive and V(G) = N(x) U N(y) for any

edge xy in G, then G = Or, which is k-ultratransitive for all

k = 1, 2, ... .

Proof. The fact that G - Or follows from Lemma 8.4. The last assertion

can be proved by direct verification.

Theorem 8.6 Suppose G is connected, 4-ultratransitive and 1(G) = 3. If

H = <N(x)>, x e V(G), is not connected, then G is the Schlafli graph or

the line-graph L(K3,3) of K3.3-
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Proof. (The Schlafli graph will be defined after the proof of this

theorem.) Since H is 3-ultratransitive under the action of r(x). By

Theorem 8.2, H - tKr for some integers t > 2, r > 2.

We first distinguish two cases.

Case 1. r > 3.

Let z, wl, w2, ... C N(x) together with x form a maximum clique

K = Kr+l in Nfx]. Let yl, Y2 belong to a maximum clique K' # K in

N[w2]. Since d(G) = 2 and G is 4-ultratransitive, yl is adjacent to a

vertex y3 a N(w1). Now <x,z,yl,y2> a <x,z,yl,y2> and thus there exists

* e r such that ' fixes x, z and yl separately and *(y2) = y3. However,

since 4' fixes x and z, 4' permutes the vertices in K - {x,z}. But it is

clear that 4'(y2) # y3 because yl and y2 belong to a maximum clique in

N[w2] whereas yl and y2 do not belong to any maximum clique in N[wi] for

some wi c K - {x,z} (see Fig.3.6(a)).

Figure 3.6

Case 2. t > 3, r - 2.

Let w, x and z form a triangle in G and let

N(w) = {x,z,yl,yi,...}, N(x) _ {z,w,xl,x1,...}, N(z) = {w,x,zl,zi,...}

where y1yi, x1xi, z1zi ... C G (see Fig.3.6(b)).

It is clear that all the vertices in Y = V(G) - (N(x) U N(z)) are

adjacent to w because they belong to the same orbit under the action of
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r(x,z). Now, since d(G) - 2, deg G = 2t and H - tK2, and each edge of G

is incident with exactly one triangle, without loss of generality, we

can assume that

N(Y1) = {w,yi,xl,zl,x2,z2,...}

where xlzl, x222, ... C G.

Next, it is clear that A - zi,z2,...} is such that each

a e A is neither adjacent to x nor adjacent to yl. Hence A forms an

orbit under the action of r(x,yl). However, each vertex in {zi,z2,...}

is adjacent to either y2 or y2 (but is not adjacent to both y2 and y2)

and <zl,z2, ...> = Ot-l. Hence

2 + (t - 1) = d<A>(y2) + d<A>(y2) = 2d<A>(zi) = 2(t - 2)

which is true only if t = 5. However, when t = 5, G is the Schlafli

graph which is 4-ultratransitive but not 5-ultratransitive.

Finally, for t = 2 and r = 2, it is not difficult to show that G =

L(K3.3) which is k-ultratransitive for any k = 1,2,...

(The vertices of the Schlafli graph are the 27 lines in a general

cubic surface, with two vertices adjacent whenever their corresponding

lines meet. Suppose G = (V,E) is the Schlafli graph. We let

V = {X.Y.Z,xl,...x4,x1,...x4.Y1....)Y4.Yi,...,y4,Z1,...,24,zi,...,24}

where x, y and z form a triangle and x1,...,x4,xi,...,x4 a N(x),

y1,...,Y4,y ....,y4 a N(y), z1,...,z4,z1,...,z4 C N(z)

Y1Y1.... ,y4y4,xlxi,...,x4x4,z1z1,...,z4z4 C G. The adjaceny of the

other vertices of G are as follows :

X1: Y1. Y29 Y39 Y49 zl. 71, z4; x2: y1. Y21 y5. Y40 zi. z29 z5. z4;

X3: y1, y2. Y31 Y41 zi, z2. z31 z4; x4: Y11 Yi, Y41 ZI, z2, z3, z4;

yl: z1, z2, z3, z4; y2: z1, z2, z3, z4; y3: zl, z2, zi, z4;

y4: Z1, Z2, Z31 Z.

Also xl: Y1. Y21 Y31 Y41 zl. z2, zJ. z4 =0 xi: Y1, Y1. Y3, Y4, Z1,

z2, z3, z4 and so on.)

Theorem 8.7 Suppose G is connected, 3-ultratransitive and y(G) - 3. If
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for each x e V(G), H = <N(x)> is connected and bipartite, then G = OT

for some integer .r > 1.

Proof. Since G is 3-ultratransitive, H is 2-ultratransitive under the

action of r(x). Thus, by Theorem 8.2, H = Kr r for some integer r > 1.

It is clear that 03 satisfies the hypothesis. Hence we may assume that

G O. Let z e N(x), W = N(x) n N(z), X = N(x) - (W U {z}), and

Z = N(z) - (W U {x}). Since Y(G) = 3, W 4. If Z = $, then G is

complete and therefore G = 0?, which contradicts the assumption that

G # O. Hence Z # $. Let w e W, z' a Z. Since xw a G, xz' $ G and

<N(z)> a Kr,r, wz' e G and thus Z - Or-1. By symmetry, X Or-1.

Suppose N2(x) # Z. Then Y = V(G) - (N(x) U N(z)) # $. Since

d(G) = 2, each y e Y is adjacent to some vertices in W U Z. If yz' e G

for some z' a Z, then <N(z')> a Kr
,r

together with yz t G implies that

yw e G for every w e W. However, <N(w)> = Kr ,r
and xz a G, imply that

either yx e G or yz e G which is false. Hence N2(x) = Z and by Theorem

8.5, G = Or for some t > 3. But t # 4. Hence G = O.

Remarks.

1. According to Cameron [83], J. M. J. Buczak (in his D. Phil. thesis,

Oxford University, 1980) has shown that, assuming the classification of

the finite simple groups, the Schlafli graph and its complement are the

only 4-ultratransitive graphs which are not 5-ultratransitive. Thus if

we can prove, without using the classification of the finite simple

groups, that if G is a finite, connected, 4-ultratransitive graph such

that for any x e V(G), H = <N(x)> is connected and is not bipartite,

then C is the complement of the Schlafli graph, we could have

reconfirmed Buczak's result.

2. A graph G is homogeneous if whenever U1, U2 E V(G) are such that

<U1> = <U2>, then there exists an automorphism of G taking U1 to U2. A

graph G is combinatorially homogeneous if whenever U1, U2 E V(G) are

such that <U1> = <U2>, then the number of vertices in G adjacent to all

the vertices in U1 and the number of vertices in G adjacent to all the

vertices in U2 are equal. Thus ultrahomogeneous graphs are homogeneous

and homogeneous graphs are combinatorially homogeneous. Enomoto [81]
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proved that every finite combinatorially homogeneous graph is

ultrahomogeneous. From this result, it follows that homogeneous graphs

are ultrahomogeneous, an earlier result proved by Ronse [78].

3. A graph G is said to be z-homogeneous if every isomorphism from any

connected induced subgraph <U1> of G onto any induced subgraph <U2> of G

can be extended to an automorphism of G. Weiss [76] determined all

finite z-homogeneous graphs.

4. A connected graph G is said to be metrically k-transitive if,

whenever two k-tuples (x1,...,xk) and (y1,...,yk) of vertices of G

satisfy a(xi,xj) - 8(yi,yj) for all i,j - 1,2,...,k, there is an

automorphism 0 of G such that *(xi) a yi for all i - 1,2,...,k.

Meredith [76] proved that a metrically 3-transitive graph of girth

greater than 4 is a cycle and that a metrically 4-transitive graph of

girth 4 is a complete bipartite graph or a complete bipartite graph

minus a matching. Cameron [80] proved that the class of metrically

5-transitive graphs coincides with the class of ultrahomogeneous graphs

given in Theorem 8.1 (except tKr, t > 2, which is not a connected graph)

from which he deduced that a metrically 6-transitive graph is one of the

following : a complete multipartite graph, a complete bipartite graph

minus a matching, a cycle, L(K3,3), or the graph whose vertices are the

3-element subsets of a set consisting 6 elements, where two vertices are

adjacent whenever the intersection of their corresponding subsets

consists of 2 elements.

5. The definition of k-ultratransitivity suggests a number of

variations which have been pointed out by Cameron [83]. For a detail

account of the variations and for many interesting problems posed by

Cameron, see Cameron [83].

6. The following are some other papers written on this subject

Cameron [77,79], Gardiner [78] and Woodrow [79].

Exercise 3.8

1. Prove that there does not exist any finite 3-ultratransitive

tournament of order at least 4.

(This was first proved, using group theoretic methods, by

W. M. Kantor in 1969. An elementary proof of this result was
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subsequently given by Yap [83]. It has been proved that a finite

tournament is 2-ultratransitive if and only if it is a Paley

tournament, see Berggren [72a] and Kantor [691.)

2. Prove Theorem 8.2.

3. Prove that the graphs Ot and L(K3 3) are ultrahomogeneous.

4. Prove that the following graph is 3-ultratransitive but not

4-ultratransitive.

0

Figure 3.7

(This graph is connected, not bipartite and having girth greater

than 3. This example indicates that probably there are quite a few

3-ultratransitive graphs which are connected, not bipartite, and

having girth greater than 3.)

5. Prove that the Schlafli graph is 4-ultratransitive (Smith [75)).

6. Prove that there does not exist a 2-ultratransitive graph G such

that for each x e V(G), <N(x)> ° Cn where n > 5.

7. A graph G is locally ultrahomogeneous if whenever U c V(G), then

every automorphism of <U> extends to an automorphism of G. Prove

that every locally ultrahomogeneous graph of finite order is

ultrahomogeneous (Gardiner [76c]).

9. Hamilton cycles in Cayley graphs

In 1970 Lovasz posed the question of whether or not every connected
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vertex-transitive graph has a Hamilton path (a Hamilton path will be

abbreviated as an H-path). Up to now only four connected vertex-

transitive graphs are known to have H-paths but do not have Hamilton

cycles. These four graphs are the Petersen graph, the Coxeter graph

(see Fig.3.8) and the graphs obtained from each of these two graphs by

replacing each vertex with a triangle and joining the vertices as

indicated in Fig.3.9. For this construction, we shall simply say that

"each vertex is replaced by a K3".

Figure 3.8 : The Coxeter graph

A

Figure 3.9 : "Replacing a vertex of valency 3 by a K3"

These four graphs are not Cayley graphs. Thus it is interesting to know

whether every connected Cayley graph is Hamiltonian. In fact, many

people believe that the answer to this question is affirmative.

In this section we shall discuss some progress made towards the

resolution of these two problems.

We recall that the B-product B = Pm x Pn of two paths P. and Pn is

the graph having V(B) _ {(i,j)
l

0 < i < m - 1, 0 < j < n - 1} such that

two vertices (i,j) and (h,k) of B are adjacent in B if and only if

either i = h and Ij - k) - 1 or j - k and li - hl = 1. For each vertex

x = (i,j) in B we shall colour it with a blue colour if i + j is even
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and we shall colour it with a red colour if i + j is odd. A vertex of B

coloured with a blue (resp. red) colour is called a blue (resp. red)

vertex. An edge joining two red (resp. blue) vertices of B is a red

edge (resp. blue edge) and an edge joining a red vertex and a blue

vertex is a purple edge. We call a vertex x a corner-vertex of B if its

valency is 2; a side-vertex if its valency is 3; and an interior-vertex

if its valency is 4.

The results of this section are due to Chen and Quimpo [81,83]. We

need the following lemmas.

Lemons 9.1 Let m, n > 3 be integers. If mn is odd, then B = Pm x Pn has

an H -path from any blue vertex x to any blue vertex y # x.

Proof. It is easy to prove, by induction on n, that Lemma 9.1 is true

for B = P3 x Pn where n > 3 is any odd integer (Ex.3.9(3)).

If m, n > 5, let BO = {(s,t) e B I s < m - 3, t < n - 3} and let
B1 = B - BO. By symmetry, we can always assume that x e BO.

We consider two cases.

Case 1. y e BO.

By induction, BO has an H-path P from x to y. It is clear that B

contains a side-edge e as shown in Fig.3.10(a). We can now replace e by

an H-path in B1 to obtain an H-path of B as depicted in Fig.3.10(a).

(a) (b) (c)

Figure 3.10
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Case 2. y e B1.

By symmetry, we may assume that y lies on the upper part of B1.

Now BO has an H-path P from x to the upper-right corner vertex v. This

path P can be extended to an H-path of B as depicted in Figs.3.10(b) and

3.10(c). (If x = v, then BO has an H-path P from x to the lower-right

corner vertex u. This path can also be extended to an H-path of B.)

Lemma 9.2 If mn is even, then B = Pm x Pn has an H path from any

corner-vertext x to any vertex in B whose colour is different from that

of X.

Proof. By symmetry, we may take x = (0,0) which is coloured blue. It

is easy to prove by induction that Lemma 9.2 is true for m - 2 and any

integer n > 2; and for m = 3 and any even integer n > 2 (Ex.3.9(4)).

Using the method as described in the proof of Lemma 9.1, we can prove

Lemma 9.2 for the general case m > 4, m even (without loss of

generality) and any n > 4.

Corollary 9.3 If mn is even (m, in > 2), then B = Pm X Pn has an H- path

connecting any two adjacent side-vertices.

We next prove

Lemma 9.4 If mn is even (m, n > 4), then B = P. x Pn has an H-path from

any blue vertex x to any red vertex y.

Proof. By symmetry, we may assume that m is even. Let x - (i,j) and

y = (h,k). Without loss of generality, we may further assume that i < h

and j < k. We will consider the following four cases separately.

Case 1. h = i and i is odd.

Let B2 - {(s,t) e B I t < j} and B3 - B - B2. By Lemma 9.2, B2 has

an H-path Q1 from x to (0,j) and B3 has an H-path Q2 from (0,j+1) to y.

Thus Q1Q2 is an H-path in B from x to y.
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Case 2. h = i and i is even.

Suppose 0 < J. We define B2 and B3 as in Case 1 above. Again, by

Lemma 9.2, B2 has an H-path Q1 from x to (m-1,j) and B3 has an H-path Q2

from (m-1,j+1) to y. Then Q1Q2 is an H-path in B from x to y. On the

other hand, if j = 0, we let B4 - {(s,t) e B I s > i, t > 11 and B5 =

{(s,t) e B I s < i} (note that B5 may be empty). By Lemma 9.2, B4 has

an H-path Q1 from (m-1,1) to y. The path Q1 must contain an edge

(i,d)(i,d+1). By Corollary 9.3, B5 has an H-path Q2 from (i-1,d) to

(i-1,d+1). Let Q3 be the path obtained from Q1 by replacing the edge

(i.,d)(i,d+1) by Q2. Then (i,0)(i+1,0)...(m-1,0)Q3 is an H-path in B

from x to y.

Case 3. h > i and i is odd.

Let 86 - {(s,t) e B I s t i} and B7 = B - B6. By Lemma 9.2, B6 has

an H-path Q1 from x to (1,0) and B7 has an H-path Q2 from (i+1,0) to y.

Then Q1Q2 is an H-path in B from x to y.

Case 4. h > i and i is even.

Let B8 = {(s,t) e B I s > i, t > j} and B9 = {(s,t) e B I s > i,

t < j}. By Lemma 9.2, B8 has an H-path P from x to y. This path P must

contain an edge (c,j)(c+1,j) for some c = i, i + 1, ..., m - 1 or an

edge (i,d)(i,d+1) for some d - 0, 1, ..., n - 1. Let this edge be

(c,j)(c+1,j), say. By Corollary 9.3, B9 has an H-path Q from (c,j-1) to

(c+1,j-1). Let R be the path obtained from P by replacing the edge

(c,j)(c+1,j) by Q. Then R is an H-path in B8 U B9 from x to y. It is

easy to modify R to obtain an H-path in B from x to y. (Note that if

B9 = 4, then P can be immediately modified to obtain an H-path in B from

x to y.) This completes the proof of Lemma 9.4.

A graph' G is said to be Hamilton-connected if for any two vertices

x, y of G, G has an H-path from x to y.

Lemma 9.5 If m > 3 is odd and n > 2, then D = Cm X Pn is Hamilton-

connected.
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Proof. We first prove that this lemma is true for n = 2. We note that

D = Cm x P2 is obtained from two cycles C and C', each of length in, by

joining corresponding vertices.

We need only to consider two cases.

Case 1. x, y e C.

If x and y are adjacent in C, then this lemma is clearly true.

Suppose x and y are not adjacent in C. Since m is odd, one of the

two semicycles of C joining x and y contains an odd number of vertices.

We can now join x to y by an H-path as depicted in Fig.3.11(a).

Case 2. x e C, y e V.

In this case, we can join x to y by an H-path as depicted in

Fig.3.11(b).

The general case can be proved by induction on n (Ex.3.9(6)).

odd number
of

vertices

x' z' z

no vertices

(a) (b)

Figure 3.11

Corollary 9.6 Suppose m > 3 and n > 1 are integers. Then each edge of

D - Cm X Pn lies on a Hamilton cycle of D.

Proof. This follows from Lemmas 9.4 and 9.5.
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Theorem 9.7 Suppose r is an abelian group of order at least 3 and the

Cayley graph G - G(r,S) is connected. Then for each g e S, G contains a

spanning subgraph isomorphic with Cm x Pn for some integers m > 3 and

n > 1 such that the edge (l,g) lies in Cm X Pn

Proof. Let g = gl and let S' _ {gl, , gk} be a minimal subset of S

which generates r. Write Si = {gl, ..., gi} and let ri be the subgroup

of r generated by Si. Then (1,g1) is an edge in Gi = G(ri, Si u Sil)

for all I > 1. If rl = r, then G = G1 contains a spanning subgraph

Cm x Pn where m - Irl > 3 and n - 1. On the other hand, if r1 # r, then
n

g2 o r1. Let n2 be the smallest positive integer such that g22 a r1.

It is clear that r2 = r1 U g2r1 U ... U g22-1 r1. Moreover, the subgraph

of G2 induced by g3r1 is isomorphic with G1 under the isomorphism

* : ri+ g2 rl defined by 4(g) - gj22g, g e rl. Also, since for each

h e r1, g2h is adjacent to g2j+1) h, G2 contains a spanning subgraph

isomorphic with
Cnl

X Pn2 where n1 > 3 is the order of gl such that

(1,gl) a E(Cnl x Pn2). (If nl = 2, then G2 = Cn2 x P2 and (1,g1) e

E(Cn2 x P2) if n2 > 3; or G2 = C4 x P1 if n2 = 2.)

Now if r2 = r, we have nothing more to prove. Otherwise by

Corollary 9.6, G2 contains a spanning cycle Cm2, where m2 = n1n2, such

that (1,g1) a E(Cm
2
). By the same argument, G3 contains a spanning

subgraph Cm x
Pn3

where n3 is the smallest positive integer such that

3g3 a r2. The validity of Theorem 9.7 thus follows by induction.

Theorem 9.8 For any edge (x,y) of a connected Cayley graph G = G(r,S)

of an abelian group r, G has a Hamilton cycles containing (x,y).

Proof. Since (x,y) a E(G), x ly a S. By Theorem 9.7 and Corollary 9.6,

G contains a Hamilton cycle containing the edge (1,x ly). Now the map

ip : r + r defined by *(h) = xh for every h e r is an automorphism of G

such that : (1,x ly) + (x,y). Thus (x,y) lies on a Hamilton cycle

of G. //

Remarks.

1. Let p be a prime. Theorem 5.1 shows that every vertex-transitive

graph of order p > 3 is Hamiltonian. Alspach [791 proved that if G
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is a connected vertex-transitive graph of order 2p, then G is

Hamiltonian. Marusic (according to Alspach [81]) has proved that

if G is a connected vertex-transitive graph of order 3p, then G is

Hamiltonian. Marusic and Parsons [83,81] have proved that if G is

a connected vertex-transitive graph of order 4p or 5p, then G has

an H-path.

2. Lipman [85] proved that if G is a connected vertex-transitive graph

such that A(G) has a nilpotent subgroup acting transitively on

V(G), or if Iv(G)I is a prime power, then G has an H-path.

3. Chen and Quimpo [83] proved that every connected Cayley graph of

order pq, where p and q are distinct primes, is Hamiltonian.

4. Further results on Hamilton cycles in Cayley graphs can be found in

Holsztynski and Strube [78], Housman [81] and Witte [82].

Exercise 3.9

1. Prove that the graph obtained from the Petersen graph by "replacing

each vertex by a K3" is vertex-transitive.

2. Prove that the Coxeter graph is vertex-transitive but not a Cayley

graph and that the graph obtained from the Coxeter graph by

"replacing each vertex by a K3" is also vertex-transitive but not a

Cayley graph.

3. Prove that for any odd integer n > 3, B = P3 X Pn has an H-path

from any blue vertex x to any blue vertex y # x.

4. Prove that B = P2 X Pn for any integer n > 2 or B = P3 x Pn for any

even integer n > 2, has an H-path from the blue vertex x = (0,0) to

any red vertex y. Prove Lemma 9.2 for the general case.

5. Prove Corollary 9.3.

6. Prove the general case of Lemma 9.5 by induction on n.

7. Show that if m > 4 is even and n = 2 or 3, then any blue vertex x

is connected to any red vertex y by a Hamilton path in Cm X Pn

8. Let r be a group and let N, H be subgroups of r such that N q r,

N n H = {1} and r is generated by N U H. Then r is said to be a

semidirect product of N by H. Suppose r is a semidirect product of
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a cyclic group of prime order by a finite abelian group of odd

order. Prove that if the Cayley graph G = G(t,S) is connected,

then it is Hamiltonian (Marueic [831).

9. Let p 5 be a prime. Prove that any two vertices x and y in the

Cayley graph G(Zp,S) are connected by an H-path (Alspach [79]).

10. Let G = G(r,S) be a connected Cayley graph such that for each

g e S, <S - {g,g-1}> # F. Prove that if G is Hamiltonian, then any

edge of G is contained in a Hamilton cycle of G.

11. Prove that a connected Cayley graph G = G(P,S) of an abelian group

t of order at least 3 is Hamilton-connected (i.e. any two distinct

vertices of G are connected by an H-path of G) if it is not

bipartite and deg G > 3 (Chen and Quimpo [81]).

10. Concluding remarks

To conclude this chapter, we shall now briefly mention some other

interesting and important results about symmetries of graphs which we

have not been able to discuss in detail due to lack of space. There are

no less than three hundred papers published on this subject. We refer

the readers to the two excellent survey articles by Babai [81] and

Cameron [83] for further information.

1. Further properties of vertex-transitive graphs

Certain general properties of VT-graphs have been studied. Watkins

[70] proved that if G is a connected VT-graph such that the connectivity

k(G) of G is less than deg G, then k(G)/deg G has the least upper bound

3/2, which is never attained. He also proved that for any connected

edge-transitive graph G, k(G) = deg G. Mader [70] proved that if G is a

connected VT-graph such that the density of G is at least 4, then k(G) _

deg G. Watkin's and Mader's results were further exploited and/or

generalized by Green [75]. Babai [78] investigated the minimum

chromatic number of Cayley graphs. Babai and Frankl [78,79] studied the

isomorphism problems of Cayley graphs. Godsil [81a] studied the

connectivity of minimal Cayley graphs. Goldschmidt [80] studied the
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automorphism groups of cubic graphs. The automorphism groups of Cayley

graphs have also been studied by several people, including Babai and

Godsil [82], Godsil [80,83] and Imrich and Watkins [76]. Lorimer [83]

described certain methods for constructing VT-graphs of degree 3.

Lorimer [84b] proved that there are exactly 6 cubic graphs G of order at

most 120 which are not bipartite and on which no automorphism group of G

acts regularly. Coxeter, Frucht and Powers [81] have constructed 350

cubic VT-graphs G of order at most 120 such that A(G) acts regularly on

V(G). Yap [70] showed how to construct Cayley graphs G(r,S) of abelian

groups r in which r has maximum number of internal stable sets (subsets

S c r such that the subgraph induced by S is a null graph).

2. Distance-transitive graphs

The following are some important results on distance-transitive

graphs.

Theorem 10.1 (D. H. Smith [71]) An imprimitive distance transitive

graph is either bipartite or antipodal. (Both possibilities can occur

in the same graph.)

(An imprimitive distance-transitive graph is a distance-transitive

graph G such that the natural action of A(G) on V(G) is imprimitive. A

graph of diameter d is said to be antipodal if, when three vertices u,

v, w are such that a(u,v) = 2(u,w) = d, then either 2(v,w) = d or

v = w.)

Theorem 10.2 (Biggs and Smith [71]) There are precisely twelve

distance-transitive cubic graphs. The orders of these graphs are 4, 6,

8, 10, 14, 18, 20, 20, 28, 30, 90 and 102.

D. H. Smith [74] determined all (a finite number) the distance-

transitive graphs of degree 4. Recently, the following important

theorem is proved, using deep results about finite simple groups.

Theorem 10.3 (Cameron [82]) There are only finitely many finite

distance-transitive graphs of given degree k > 2.
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For a detailed study on distance-transitive graphs, see Biggs [74;

Chapters 20, 21 and 22]. The study of distance-transitive graphs is

still active. The more recent papers include Cameron, Saxl and Seitz

[83], and Gardiner [82].

3. Long cycles in vertex-transitive graphs

In §9, we have shown that several classes of connected Cayley

graphs possess Hamilton cycles. However, the problems that whether

every connected Cayley graph is Hamiltonian and whether every connected

vertex-transitive graph contains a Hamilton path remain open. We now

mention a result of this kind from another approach.

Theorem 10.4 (Babai [79]) Every connected vertex-transitive graph of

order n > 4 has a cycle of length greater than .

4. The characteristic polynomial of a graph

Suppose G is a graph with vertex set V = {vl,...,vn}. The

adjacency matrix A[G] _ (aij) of G is a matrix such that aij = 1 if vivj

e E(G) and aij = 0 if vivj ¢ E(G). There are relations between certain

properties of G and the eigenvalues of A[G]. The following are some

typical results of this kind.

Theorem 10.5 (Mowshowitz [69]; Petersdorf and Sachs [70]) For a graph

G, if all eigenvalues of A[G) are distinct, then the automorphism group

of G is an elementary abelian 2-group.

Theorem 10.6 (Cameron [83]) For a graph G, if all eigenvalues of A[G]

have multiplicity at most 3, then the automorphism group of G is

soluble.

For short proofs of the above results, see Cameron [83].

Theorem 10.7 (Yap [75]) The characteristic polynomial of the adjacency

matrix A[M] of a multi-digraph (or weighted-digraph) M whose

automorphism group is nontrivial is the product of the symmetric part of
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M and the characteristic polynomial of the complementary part of M.

(For definitions of weighted-digraph, the symmetric part of M and

the characteristic polynomial of the complementary part of M, see Yap

[75].) Theorem 10.7 generalizes some results of Collatz and Sinogowitz

[57], and Mowshowitz [73]. From Theorem 10.7, we have

Corollary 10.8 If the characteristic polynomial of A[G] of a graph G is

irreducible over the field Q of rational numbers, then the automorphism

group of G is trivial.

For further results about the relations between the eigenvalues of

A[G] and the properties of G, the readers may refer to the excellent

book by Cvetkovic, Doobs and Sachs [80].

5. Graphs with given constant link

Suppose G is a vertex-transitive graph. Then for any two vertices

x and y of G, the subgraphs induced by the neighbourhoods of x and y are

isomorphic. It is interesting to know whether for a given graph L,

there exist graphs G such that <N(x)> = L for any x C V(G). If such a

graph G exists, then L is called a link graph. Several papers on this

subject have been published. Some of these papers investigated which

graphs are link graphs and some characterized all graphs with a given

constant link. For instance, Hall [80] proved that the Petersen graph P

is a link graph and that there are exactly three isomorphism classes of

connected graphs with constant link P. Other papers on this subject can

be found from the references of Vogler [84].

6. Vertex-transitive graphs of small order

Using the results of 45, we can construct all VT-graphs of prime

order p. Yap [73] constructed all VT-graphs G of orders 4, 6, 8, 10 and

12 (except deg G = 5) by hand. Using computer, McKay [79] listed all

the 1031 VT-graphs of order less than 20, together with many of their

properties.
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7. Symmetric graphs characterized by their local properties

In the exploratory paper by Praeger [82a], many results by Cameron

[72,74], Praeger [82b] and others on symmetric graphs characterized by

their local properties are surveyed and many interesting problems are

posed.
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4. PACKING OF GRAPHS

1. Introduction and definitions

Suppose G1, C2, ..., Gk are graphs of order at most n. We say that

there is a packing of G1, G2, ..., Gk into the complete graph Kn if

there exist injections ai : V(Gi) + V(Kn), i - 1,2,..., k such that

ai(E(Gi)) fl aj(E(Gj)) - 4i for i # j, where the map ai : E(Gi) + E(Kn) is

induced by mi. Similarly, suppose G is a graph of order m and H is a

graph of order n > m and there exists an injection a : V(G) + V(H) s-ich

that a*(E(G)) fl E(H) - 0. Then we say that there is a packing of G into

H, and in case n - m, we also say that there is a packing of G and H or

G and H are packable. Thus G can be packed into H if and only if G is

embeddable in the complement li of H. However, there is a slight

difference between embedding and packing. In the study of embedding of

a graph into another graph, usually at least one of the graphs is fixed

whereas in the study of packing of two graphs very often both the graphs

are arbitrarily chosen from certain classes.

In practice, one would like to find an efficient algorithm to pack

two graphs G and H. But this has been shown to be an NP-hard problem

(see Garey and Johnson [79;p.64]). However, if one restricts G and H to

some special classes of graphs, for instance, both G and H are trees,

then there exist polynomial time algorithms for the packing of G and H

(mentioned in Hedetniemi, Hedetniemi and Slater [811).

In this chapter, we shall present some results on the following two

theoretical packing problems. The first one is a dense packing of trees

of different sizes into Kn ($2). The second one is a general packing of

two graphs having small size (43 to 48). The main reference of this

chapter is the last chapter of Bollobas' book : "Extremal Graph

Theory". Some results of this chapter will be applied in Chapter Five.

We shall require the following definition. Suppose there is a

packing a of G and H. Then the set of edges of H incident with at least

one vertex of a(v), v c V(G), is said to be covered by G.



Exercise 4.1

1. Let Ti be a tree of order i. Prove that any sequence of trees T2,

T3, ..., Tn, in which all but two are stars, can be packed into Kn

(Gyarfas and Lehel [78]).

2. Let G be a graph of order n and size n - 2. Prove that there

exists a packing a of G into its complement G such that a(v) 0 v

for all v e V(G) (Burns and Schuster [77]).

3': Ringel's conjecture For any arbitrary tree Tn+l of order n+1, there

is a packing of 2n + 1 copies of Tn+l into K2n+1 (Ringel [63]).

2. Packing n - 1 trees of different size into Kn

Erdos and Gallai [59] proved that every graph G having size

e(G) > 4 IGI(k - 1) contains a path of length k. In 1963, Erdos and

Sos made the following conjecture.

Conjecture (Erdos and Sos) If G is a graph and e(G) > I IGI(k - 1),

then G contains every tree of size k.

Motivated by the above conjecture, Gyarfas raised the question that

whether any sequence of trees T2, ..., Tn (Ti is a tree of order i) can

be packed into Kn. Gyarfas' question has now been quoted in many books

and research papers as the Tree Packing Conjecture (TPC).

Tree Packing Conjecture Any sequence of trees T2, T3, ..., Tn can be

packed into Kn.

Gyarfas and Lehel [78] proved that the TPC is true for two special

cases. The first special case is given in Ex.4.1(1). Their proof of

the second special case (Theorem 2.1) is complicated. An alternate,

short proof of the second special case due to Zaks and Liu [77] is given

below. Straight [79] also confirmed that the TPC is true for several

other special cases. His results are given in Ex.4.2(5), (6) and (7).

From straight's results, we can verify that the TPC is true for all n <

7. Fishburn [83] also proved that the TPC is true for some more special

cases and verified that the TPC is true for n - 8, 9. We note that if
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the TPC fails to hold for some integer N, then it fails to hold for all

integers n > N. (For n = N + 1, simply take Tn = Sn.)

We need the following definitions. Let A[G] _ (aij) be the

adjacency matrix of a graph G. Since G is undirected, A[G] is symmetric

and thus we need only to use the upper right part of A[G] which is

denoted by AR[G]. In AR[G] we name the following sequence of l's as a

(right) stair :

ai,j, ai,j+1' ai-1,j+l, ai-1,j+2' ... ' ai-k,j+k' ai-k,j+k+l

where it is possible that either ai,j or ai-k,j+k+l (or both) may be

excluded. From this definition, it follows that a stair in AR[G]

corresponds to a path in G.

Theorem 2.1 Any sequence of trees T2, ... Tn where Ti a {Si,Pi} can

be packed into Kn.

Proof. We partition AR[Kn] into the following two blocks :

A1(n) _ {aij ( i + j < n}, A2(n) _ {aij ( i + j > n} (see Fig.4.1).

n - 2

1

Block A1(n)

1

2

11

11

3

Block A2(n)

n - 1

Pn-1 P T
n

n - 1

Figure 4.1

I

n S
n

158



We prove the theorem for even n (for odd n, the proof is similar).

We shall show that A1(n) can be decomposed corresponding to the given

trees Ti for odd i, and that A2(n) can be decomposed corresponding to

the trees Tj for even J. The proofs for A1(n) and A2(n) are similar, so

let us show the result for A2(n) by induction on n.

For n = 2, it is clear that T2 = S2 can be packed into K2. Assume

that the result is true for all even m < n. Now by deleting either the

last column (which corresponds to the case Tn = Sn) or the stair in

A2(n) as shown in Fig.4.1 (which corresponds to the case Tn = Pn), and

by deleting the first row (which corresponds to the case Tn_1 a Sn_1) or

the stair in AI(n) as shown in Fig.4.1 (which corresponds to the case

Tn-1 = Pn-1), we are left with two blocks of A1(n-2) and A2(n-2). The

result follows by induction. i/

Since a resolution to the TPC is hard, we may look for some other

aspects of a similar nature. Theorem 2.3 is an example of such an

attempt. We shall require the following lemma (see Bollobas [78;

p.xvii]).

Lemma 2.2 Let k be a positive integer. Suppose H is a graph of order

n>k+1. If
e(H) > (k - Mn - k) + (2) + 1 ,

then H contains a subgraph F such that S(F) > k.

Proof. We prove this lemma by induction on n. Suppose n = k + 1. Then

(k21)
> e(H) > (k - 1) + (2) + 1 = (k+1).

Hence H - Kk+l and the result follows.

Suppose n > k + 2 and S(H) < k - 1. Let x be a vertex of H. Then

e(H - x) > (k - 1)(n-k)+ (2)+1- (k 1)

) 1,_ (k - 1)[(n - 1) - k] + (2 +

and by induction, H - x contains a subgraph F such that 6(F) > k. //
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Theorem 2.3 (Bollobas [83]) If 3 < s <

2

T n, then any sequence of

trees T2, T3, ..., Ts can be packed into K.

Proof. Suppose Tk+1, Tk+2,..., Ts have been packed into Kn. Let

H = Kn
U j=k+lE(Tj)

. Then H is a graph of order n and

e(H) _ 1 {n2 - n - (s + k - 1)(s - k)} (1)

We claim that H has a subgraph F having minimum valency k - 1. Indeed,

otherwise by Lemma 2.2, we have

e(H) < (k-1) + (k - 2)(n - k + 1)

Now (1) and (2) imply that

(2)

n2-s2 -2kn+2k2+3n+s+2-4k<0 (3)

Since s2 <
4

n2, from (3) we have

n2 - 4kn + 4k2 + 6n + 2s + 4 - 8k < 0,

from which it follows that

(n- 2k)2+6n+2s+4 -8k <0,

which is false because n > s > k + 1.

Finally, d(F) > k - 1 implies that Tk can be embedded in F. //

Remark. If the conjecture of Erdos and Sos is true, then we can replace

the bound 2 V7 n by

2

n n.

Exercise 4.2

1. Prove that the sequence of paths P2, P4,..., P2n can be packed into

Kn,n (Zaks and Liu [77]; Fink and Straight [81]).

2. Prove that for odd n, the sequence of paths P3, P5,-- P2n+1 can

be packed into Kn n+l (Zaks and Liu [77]; Fink and Straight [81]).

3. Prove that any sequence of trees T2, T3, ..., Tn where Ti c {Si,Pi}
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can be packed into K1 (Kn_1 ) for n even (odd) (Zaks and Liu
[77]). Z,n-1 2 ,n

4. Prove that any sequence of trees T2, T3, ..., Tn such that each Ti

having diameter at most three can be packed into Kn (Hobbs [81]).

(A. M. Hobbs and J. Kasiraj have improved this result by allowing

one of the trees Ti to have diameter more than three - mentioned in

Hobbs [811.)

5. Let Li be the tree of order i shown in Fig.4.2.

-O--O -O-O-i i fl
Li, i even Li, i odd

Figure 4.2

Prove that any sequence of trees T2,..., Tn where Ti e {Si,Pi,Li}

can be packed into Kn (Straight [791).

6. Prove that for any integer n > 2, any sequence of trees T2,..., Tn

such that A(T1) > i - 2 with at most two exceptions, can be packed

into Kn (Straight [791).

7. Prove that for any integer n > 2, any sequence of trees T2,..., Tn

such that A(Ti) > i - 3 with at most one exception, can be packed

into Kn (Straight [79]).

8. Using the results of problems 5, 6 and 7, prove that the TPC is

true for all n < 7 (Straight [791).

9t A vertex of a tree having valency at least two is an interior

vertex. A tree is a caterpillar if the induced subgraph of its

interior vertices is a path. A diameter-3 (diameter-4) caterpillar

is called a double star (triple star). A triple star is unimodal

if its interior vertices x, y and z satisfy d(y) > d(x) or d(y) >

d(z) where xyz is a path. An interior-3 caterpillar is a

caterpillar having all interior vertices xl, x2, ..., xn such that

xl x2 ... xn is a path and d(x1) > 2, d(x2) - ... - d(xn_1) = 3 and

d(xn) - 2. A tree is a .spider if it has only one vertex of valency

at least three. A thin-body spider is a spider such that one and
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only one of its end-vertices has diameter at least 3 from the body

vertex (see Fig.4.3).

Prove that if each Ti is a double star, unimodal triple star,

interior-3 caterpillar or thin-body spider, then T2,..., Tn can be

packed into Kn (Fishburn [83]).

- (___C65A
a caterpillar

a unimodal triple star

a spider

Figure 4.3

a double star

an interior-3 caterpillar

O

a thin-body spider

10. Using the result of Problem 9, prove that the TPC is true for n = 8

and n - 9 (Fishburn [83]).

11. Let k > 3 and n > k + 1 be integers. Suppose G is a graph of order

n and e(G) > 1 (1 +
nnk Wk - 1) + 1. Prove that G contains all

trees of size k. Hence, show that if k and n are integers

satisfying2 < k <4 n, and G is a graph of order n and size at

least
4
n(k - 1), then G contains all trees of size k.
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3. Packing two graphs of small size

In this section we present some sufficient conditions for packing

two graphs of small size. We shall apply these results in the

subsequent sections.

Theorem 3.1 (Sauer and Spencer [78]) Suppose G and H are graphs of

order n. If e(G)e(H) < (Z), then G and H are packable.

Proof. Let £ be the set of all bijections a : V(G) + V(H). Then I£I -

n!. Let e - {u,v} c E(G) and a c E. The induced map a* of a on E(G) is

given by a*(e) - {a(u),a(v)}. For any e e E(G) and f e E(H), we define

A(e,f) - {a e £ I a*(e) - f}.

Then I U A(e,f)I < I IA(e,f)I - 2e(G)e(H)(n - 2)! < n!.
e,f e,f

Hence there exists a e £ such that a*(e) ¢ h for any e c E(G) and for

any f e E(H), i.e. a is a packing of G and H.

Remark. Let G - S2m and H - mK2. Then G cannot be packed in H. Thus

Theorem 3.1 is best possible.

The following theorem was first announced by Catlin 1741. The

proof given here is due to Sauer and Spencer [781 (see also Bollobas

[78;p.425]).

Theorem 3.2 Suppose G and H are graphs of order n. If 2A(G)A(H) < n,

then there is a packing of G and H.

Proof. The assertion is trivial for n < 2 so we assume that n ; 3. Let

a : V(G) + V(H) be a bijection such that G and H have minimum number of

edges in common. Suppose V(G) - {x1, ..., xn} and V(H) - {y1, .. ', yn}

where yi - a(xi). We may assume that x1x2 a E(G) and yly2 c E(H) and

obtain a contradiction by showing that there exists an index i > 2 such

that by flipping x2 with xi, i.e. mapping x2 to yi and xi to y2, the

number of common edges decreases.
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Let L be the set of indices k > 2 for which there is an index j

such that either x2xj a E(G) and ykyj a E(H) or xkxj a E(G) and

y2yj a E(H). Since d(x2), d(xk) < A(G), d(yk), d(y2) < A(H),

xlx2 a E(G) and yly2 E E(H), ILI < 2A(G)A(H) - 2 < n - 2. Hence there

exists an index i, 3 < i < n, such that 1 t L. We can now flip x2 with

xi. After flipping, there are no edges of G incident with x2 or xi

overlapping with any edge of H. The other edges of C and H remain the

same. Thus the number of overlapping edges of G and H have been

decreased, a contradiction.

Bollobas and Eldridge [78a] pointed out that the result of Theorem

3.2 is almost best possible. For example, suppose dl and d2 are two

integers such that dl < d2 < n and suppose n < (di + 1)(d2 + 1) - 2.

Let n - pi(di + 1) + ri, 1 < ri < di + 1, G = plKd
1
+1 U Kr

1

, and H =

p2Kd2+1 U Kr2 Then A(G) = dl, A(H) - d2 and there is no packing of G

and H. Thus if n < (A(G) + 1)(A(H) + 1) - 2, then G and H may not be

packable. Motivated by this example, they made the following

conjecture.

Conjecture (Bollobas and Eldridge) If G and H are graphs of order n

and (A(G) + 1)(A(H) + 1) < n + 1, then there is a packing of G and H.

Remarks.

(1) From Theorem 3.2 it follows that this conjecture is true for

A(G) = 1.

(2) It is mentioned in Bollobas [78; p.426] that the trueness of this

conjecture for A(G) = 2 implies a theorem of Corradi and Hajnal;

and the trueness of this conjecture extends a theorem of Hajnal and

Szemeredi. For detail, see Catlin [77].

(3) For further conjectures and open problems on the packing of two

graphs, the readers may refer to Bollobas [78; p.436 - 437].

Exercise 4.3

1. Let m and s be positive integers such that

(2) < m < (s21) .
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Let G and H be graphs of order n, e(G) = m and

e(H) < (2) - is-1 (n) - 1

where ts_1(n) is the size of the Turan graph Ts(n) which is

approximately equal to 2 (1 - s-j)n2. Prove that if n is

sufficiently large, then there is a packing of G and H (Bollobas

and Eldridge [78a]. See also Bollobas [78; p.426]).

(Note that the example G = Ks U On_s and H = Ts_1(n) shows that

this result is best possible.)

2. Suppose 0 < a <1 and n is sufficiently large. Prove that if G and

H are graphs of order n, e(G) < an and e(H) < -S (1 - 2a)n3'2, then

there is a packing of G and H (Bollobas and Eldridge [78a]. See

also Bollobas [78; p.427]).

(Note that the example G - Kt+1 U On-t-1 and H - tKn/t shows that

this result is near to being best possible.)

4. Packing two graphs of order n having total size at most 2n - 3

Milner and Welsh [74] noticed that if any two graphs G and H of

order n such that e(G) + e(H) < [2 (n - 1)] are packable, then one can

prove that the computational complexity of any graph property F has

lower bound [T (n - 1)]. They conjectured that e(G) + e(H)

< [. (n - 1)] is sufficient for the packing of two graphs G and H.

This conjecture was proved by Sauer and Spencer [78]. We now present

the main packing theorem of Bollobas and Eldridge [78a] which

generalizes the result of Sauer and Spencer. The proof of the main

packing theorem depends heavily on Lemma 4.1. The alternate proof of

Lemma 4.1 and a slight simplification of the original proof of Theorem

4.2 given here are due to Teo [85].

Lemma 4.1 Let T be a tree of order p and let G be a graph of order n.

Suppose 2 < 2p < n (n > 5), A(G) <n- 1 and n - 1 < e(G) 4n+2-3.
Then there is a packing of T and G such that T covers at least p + 1

edges of Gand A(G - T) <n - p - 1.

Proof. We shall prove this lemma by induction on n and p. Suppose
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p = 1 and T is the isolated vertex x. We can map x to a vertex u of G

such that d(u) = A(G). If A(G - x) < n - 2, we are done. Otherwise G

has two vertices u and v such that d(u) = d(v) = n - 2 and N(u) n N(v) #

4). We now map x to w, where w e N(u) (1 N(v).

Suppose p = 2 and T is the edge xy. We now map x to a vertex u of

valency A(G) and map y to a vertex v not adjacent to u and of maximum

possible valency. Then T covers at least three edges of G. If C - T

has a vertex w of valency n - 3, then u is adjacent to w for otherwise

both u and v have valency at least n - 3 and so 3(n - 3) < e(G)

< -T (n - 2), i.e. n < 4, a contradiction to the assumption that n > 5.

Consequently both u and w have valency n - 2 and so 2(n - 2) - 1 <

2 (n - 2), i.e. n < 4, another contradiction. Hence A(G - T) < n - 3.

Suppose p > 3. Then n > 6. Let x be an end-vertex of T, y be the

neighbour of x, T' = T - x and T" = T - x - y. Since e(G) < n + 3 - 3,

6(G) < 2. We consider the following three cases separately.

Case 1. 6(G) = 0.

Let u and v be vertices of G such that d(u) = 0 and d(v) = A(G).

Clearly A(G - u - v) < n - 3 for otherwise 2(n - 3) < e(G) < n + 3 - 3

implies that n < 2 . By adding A(G) - 2 edges to G - u - v in a nice

way, we obtain a graph G' such that A(GI) < n - 3 and n - 3 < e(G') <

n - 2 + - 3. By induction (the case that n = 6 can be verified

easily), there is a required packing a of T" and G'. We can extend a to

a required packing of T and G by letting a(x) = v and a(y) = U.

Case 2. 6(G) - 1.

Let u and v be vertices of G such that d(u) 1 and uv a G.

Suppose A(G - u) = n - 2. Then G has a vertex z v such that d(z)

n - 2. Now

e(G-u-v-z) <n+p-3-(n- 1) =p-2 and
e(T")e(G - u - v - z) < (p - 3)(P - 2) < n - 6 < (n23).

Thus by Theorem 3.1, there is a packing a of T" and G - u - v - z. We

can extend a to a required packing of T and G by letting a(y) = u and
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CF(X) = Z. (Note that T covers at least n - 1 > n- + 1 > p + 1 edges and
2

A(G - T) < P - 2 <2 - 1 < n - p

Suppose A(G - u) < n - 2. We have (n - 1) - 1 < e(G - u) < n - 1

+p-3 <n-1+p_i-3. If T is a tree of order s<p-1 n21 ,

then by induction, there is a required packing of T and G - u which is

also a required packing of T and G. Hence we need only to consider the

case ITI = p = 2 . In this case e(G) = n - 1. Now if d(v) < 2 , then

since there is a required packing a of T' and G - u, we can extend a to

a required packing of T and G by letting a(x) = u (if a(y) 0 v) or by

mapping x to a vertex not adjacent to v (if a(y) = v). Finally, if G

has no such pair of vertices u and v, then since e(G) = n - 1, G = Sk U

Cr, U ... U Cr where k > 2 + 1. It is easy to obtain a required

packing of T and G by mapping a vertex of T to a vertex of a cycle-

component of G and the other vertices of T to the vertices of the star-

component.

Case 3. 6(G) = 2.

Let u be a vertex of G having valency 2. The case A(G - u) = n - 2

can be settled as in Case 2. Hence we assume that A(G - u) < n - 2.

Since 6(G) =2, e(G) >n. Hence (n - 1) -1 < e(G - u) < n - 2 + p -3

< n - 1 + np - 3. Thus, by induction, there exists a required packing

of T and G - u unless 2p = n. However, if 2p = n, then e(G) = n - 1, a

contradiction.

Theorem 4.2 Suppose H and G are graphs of order n, A(H), A(G) < n - 1,

e(H) + e(G) < 2n - 3 and {H,G) is not one of the following pairs :

(2K2, 01 U K3), {02 U K31 K2 U K311 {3K2, 02 U K4), {03 U K3, 2K3),

{2K2 U K31 03 U K411 {04 U K41 K2 U 2K31 and {05 U K4, 3K3).

Then there is a packing of H and G.

Proof. Without loss of generality we assume that e(H) + e(G) = 2n - 3,

e(H) < n - 2 and e(G) > n - 1. Let p be the order of the smallest tree-

component T (which may be O1) of H. Then 2p < n and e(H) > n - n- .

p

Hence e(G) < n + P - 3. Now if n > 5, then by Lemma 4.1, there is a
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packing of T and G such that e(H - T) + e(G - T) < 2(n - p) - 3 and

A(G-T) <n- p- 1. Thus, if A(H-T) <n-p- land {H-T, G-T}
is not one of the forbidden pairs, then by induction H - T can be packed

into G - T and so H can be packed into G. It remains to consider three

special cases, namely, (i) n < 4; (ii) A(H - T) > n - p - 1; and

(iii) {H - T, C - T} is one of the forbidden pairs.

Suppose n < 4. Then p < 2. The case p - 1 is trivial. On the

other hand if p = 2, then n = 4, e(H) = 2 (and thus H = 2K2) and e(G)

3. In this case H and G are packable unless G 01 U K3.

Suppose A(H - T) > n - p - 1. Then n - 2 - (p - 1) > e(H - T) >

n - p - 1, from which it follows that e(H - T) n - p - 1 and thus

H - T = Sn-p. From this, we have e(H) = n - 2 and e(G) - n - 1. We can

now map the centre of the star H - T to a vertex u of G such that

dG(u) < 1 and map the rest of the vertices arbitrarily so that they

cover at least n - p + 1 edges of G and 6(G - (H - T)) = 0. Hence

e(T) + e(G - (H - T)) < (p - 1) + (n - 1 - (n - p + 1)) = 2p - 3 and

A(G - (H - T)) < e(G - (H - T)) < p - 1. If T is a star, we can pack

the centre of T on an isolated vertex of G - (H - T). Otherwise A(T) <

p - 1 and by induction we can pack T with G - (H - T).

Finally, suppose {H - T, G - T} is one of the forbidden pairs. We

first observe that e(H - T) < (n - 2) - (p - 1) = n - p - 1. We shall

begin with the smallest n to obtain the other forbidden pairs in a

systematic way as indicated below (we prove only for two cases, the

other cases can be proved in a similar way).

Suppose {H - T, G - T} _ {2K2, 01 U K3). If H - T - 01 U K3, then

by the choice of T, we have T - O1. Hence H = 02 U K3 and G is a

subgraph of 01 + (2K2) with e(C) - 4. Thus H and G are packable unless

C = K2 U K3. On the other hand, if H - T = 2K2, then either

H = 01 U 2K2 or H - 3K2. Suppose H - 01 U 2K2. Then G is a subgraph of

01 + (01 U K3) with e(G) = 5. Thus H and G are packable. Suppose H =

3K2. Then G is a subgraph of 02 + (01 U K3) with e(G) 6. Thus H and

G are packable unless G 02 U K4.

Suppose {H - T, G - T} _ {05 U K4, 3K3). Then H - T - 05 U K4

because e(H - T) < n - p - 1. Hence H = 06 U K4 and G is subgraph of

01 + (3K3) with e(G) - 11. Thus H and G are packable. //
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Suppose G and H are graphs of order n. If A(G) - n - 1 and 6(H)

> 1 (or A(H) - n - 1 and 6(G) > 1), then obviously there is no packing

of G and H. Hence in Theorem 4.2 we have to assume that A(H), A(G) <

n - 1. Now from Theorem 4.2 we have

Corollary 4.3 Suppose G and H are graphs of order n such that neither

A(H) - n - 1 and 6(G) > 1 nor A(H) - n - 1 and 6(G) > 1 holds. We have

(i) if e(G) + e(H) < 2n - 3 and {G, H) is not one of the forbidden

pairs, then there is a packing of G and H;

(ii) if e(G) + e(H) < 2n - 4, then there is a packing of G and H; and

(iii) if e(G) + e(H) < [-y (n - 1)], then there is a packing of G and H.

Proof. It is sufficient to prove (1). Suppose A(G) < A(H). If A(H) <

n - 1, then the result follows from Theorem 4.2. If A(H) - n - 1 and

6(G) - 0, then we can map an isolated vertex x of G to a vertex y of H

such that d(y) - n - 1. Then e(G - x) + e(H - y) < n - 2 and one can

easily find a packing of G - x with H - y.

Exercise 4.4

1t Suppose G and H are graphs of order n and e(G) + e(H) < 2 (n - 2).

Let x e V(G), y e V(H) be such that dG(x), dH(y) < 2 (n - 2). Prove

that there is a packing o of G and H such that a(x) - y (Bollobas

and Eldridge [78a]).

(Note that this result has been applied in the study of

computational complexity of graph properties. The condition that

dG(x), dH(y) < 2 (n - 2) cannot be replaced by dG(x) + dH(y) <

n - 2. The following is such an example : Let r > 2, n > 2(r2 - 1),

G - Kr+l U On-r-1), H ' Sn-r-1 U Kr+l, x e V(G) is a vertex in Kr+l

and y e V(H) is the centre of the star Sn_r_1 See Bollobas

[78;p.4251.)

2. Let r > 4 and let G and H be graphs of order n satisfying

A(G) < A(H) - n - r and e(G) + e(H) < 2(n - r) + (r - 1)/i.

Prove that if n > 9r3/2 and there is no packing of G and H, then r

is a perfect square, say r - (k + 1)2, and G - S.+1 U kKk+2 - H,
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where m - n - (k + 1)2.
(This is due to S. E. Eldridge, Ph. D. Thesis, University of

Cambridge, 1976; see Bollobas [78;p.436].)

3': Let k > 2 be an integer. Prove that any sequence of graphs G1, G2,

..., Gk of order n such that e(Gi) < n - k for each i = 1,...,k are

packable (Bollobas and Eldridge [78a]).

(Note that Theorem 4.2 implies that this conjecture is true for

k = 2.)

5. Packing a tree of order n with an (n, n - 1) graph

In the later part of this chapter, we shall generalize the main

packing theorem of Bollobas and Eldridge (Theorem 4.2) to a packing of

two graphs H and G of order n such that e(H) + e(G) < 2n - 2. This

generalization is carried out in a few steps. A preliminary step is to

show that any tree T of order n > 5 can be packed into a graph G of

order n and size n - 1. This result is due to Slater, Teo and Yap [85].

The original proof of this result uses induction on n by deleting two

vertices from both T and G, and as a result we need to verify quite a

few cases when n = 5, 6. The alternate proof given here is due to Teo

[85]. This alternate proof uses induction on n by deleting one vertex

from both T and G, and uses the following three lemmas. Lemma 5.1 is

due to Hedetniemi, Hedetniemi and Slater [81].

The following definitions are required. A graph of order n and

size m is called an (n,m) graph. The tree Sn of order n > 5 is obtained

from the star Sn_1 by inserting a vertex on an edge. The tree Sn(n > 6)

is obtained from S'_1 by inserting a new vertex on the edge which is not

incident with the centre of Sn_1. From a given tree T of order n > 6,

we obtain the trees T(1), T(2), T(3) and a forest T(4) as described

below: T(1) # Sn_1 is obtained from T by deleting one end-vertex whose

neighbour is of valency at most n/2; T(2) # Sn_2 is obtained from T by

deleting two end-vertices whose neighbours are distinct; T(3) # Sn_3 is

obtained from T by deleting three end-vertices which are not adjacent to

one common neighbour; T(4) is obtained from T by deleting a set of three

independent vertices which cover at least five edges of T.
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Lemma 5.1 If T and G are trees of order n > 4, neither of which is

astar, then T and G are packable.

Proof. We prove this lemma by induction on n. It is not difficult to

verify that this lemma is true for n t 5. Hence assume that n > 6. We

first consider the case T = Sn. Let v be an end-vertex of G, w be the

neighbour of v, and x be a vertex of G which is not adjacent to w. Then

Sn can be packed into G by mapping its centre c to v, and a to w where a

is the vertex of Sn which is not adjacent to c. We may now assume that

neither T nor G is Sn, and so each has two end-vertices at distance at

least three whose removal does not leave a star. Let ti and t2 be such

end-vertices of T with neighbours vl and v2, and choose ul, u2, wl and

w2 similarly from G. By induction, there is a packing * of T - t1 - t2

into G - ul - u2. If *(vi) # wi, i - 1, 2, then obviously i can be

extended to a packing of T and G. If *(v1) = wl and/or I(v2) = w2, then

we can rename vl by v2 and vice versa, and is again extendable to a

packing of T and G. //

Lemma 5.2 Let G and H be two graphs of order n. Suppose G has an end-

vertex u whose neighbour is v and H has an end-vertex x whose neighbour

is y. If dG(v) + dH(y) < n and there is a packing n of G - u and

H - x, then there is a packing of G and H.

Proof. If n(v) # y, then it can be extended to a packing of G and H by

mapping u to x. Hence we assume that n(v) = y. Let A = V(G) - NG(v)

and B = V(H) - NH(y). Since each a(# u) e NG(v) is such that n(a) a B,

each b(# x) a NH(y) is such that n-1(b) e A and dG(v) + dH(y) < n,

there exists c e A such that a(c) a B. Hence the map 4 : V(G) + V(H)

given by *(u) - n(c), i(c) = x and j(d) = n(d) for every d e V(G),

d # u,c, is a packing of G and H.

Although in the proof of Theorem 5.4 we require only part (i) and

part (ii) of Lemma 5.3, we include a proof of part (iii) in Lemma 5.3

here because all the three parts will be applied later.
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Lemma 5.3 Let T be a tree of order n > 6. Then

(i) T(1) and T(2) exist if and only if T # Sn or Sn;

(ii) for n > 8, T(3) exists if and only if T # Sn, Sn or P
n
; and

(iii) T(4) exists if and only if T # Sn, Sn or Sn.

Proof. For each of the three parts, the necessity is easy to verify,

therefore we only need to prove the sufficiency.

(i) Suppose T(1) does not exist. Let x be an end-vertex of T and let y

be the neighbour of x. Then either T - x = Sn-1 or d(y) >
n21

. It

is clear that T - x = Sn_1 implies that T = Sn or Sn. Also if d(y) >
n21

and T # Sn or Sn, then T has at least one branch from y having at

least three vertices or T has two branches from y each having at least

two vertices. In either case T has another end vertex xl such that

T - xl = T(1).

Suppose T(2) does not exist. Then for any two end-vertices u and v

of T having distinct neighbours, T - u - v = Sn_2. Since n > 6, either

u or v must be adjacent to the centre of Sn_2 and so T = S.n

(ii) Suppose T # Pn. Then T has at least three end-vertices x1, x2

and x3. Let their neighbours be yl, y2 and y3 respectively. In each of

the three cases I{y1, y2, y3}I = 1, 2, 3, it is not difficult to show

that if T ¢ Sn or Sn, then T(3) exists.

(iii) If T(4) does not exist, then the diameter of T is at most 4 and

it is easy to see that T = Sn, Sn or Sn. //

Theorem 5.4 Let T be a tree of order n > 5 and let G be an (n, n - 1)

graph. If neither T nor G is a star, then there is a packing of T and

G.

Proof. By Lemma 5.1, we can assume that G is not a tree. We now prove

this theorem by induction on n.

Claim 1. The theorem is true for n = 5.

Since G is not a tree, G contains a cycle. Also, since G is an

(n, n - 1) graph which is not a tree, G is not connected. Hence
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G = K2 U K3, O1 U C4 or 01 U G1 where G1 is obtained from K4 by

deleting two adjacent edges. In any of these three cases, it is not

difficult to verify that T = P5 or SS (note that if T # S51 then T = P5

or S5) can be packed into G.

Claim 2. The theorem is true for T = S.
n

Since G is an (n, n - 1) graph where n > 5, either G has an

isolated vertex or G has an end-vertex. If G has an isolated vertex, it

is clear that T and G are packable. Suppose G has an end-vertex, v1 say.

Then G - v1 # Kn-l. Let v2 be the neighbour of vl and v2v3 k G.

Then we can map the centre c of Sn to vi and the vertex of Sn which is

not adjacent with c to v2 to obtain a packing of Sn and G.

Claim 3. The theorem is true if G has an isolated vertex.

Suppose vl is an isolated vertex of G. By deleting a suitable edge

e from G - vl, we obtain a graph G' = G - vl - e such that A(G') < n - 2

and G' is an (n - 1, n - 2) graph. Suppose T is a path. Let it be a

packing of T(1) into G'. If T(l) overlaps with e = v2v3 (say) of G',

then we can modify it to a packing of T into G by replacing e by v2v1 and

v1v3. If T(1) does not overlap with e, then we can extend it to a

packing of T into G by joining vl to an end-vertex of T(1). Hence we

assume that T is not a path. Then T has a vertex x of valency at least

three. We now have e(T - x) + e(G - v1) < (n - 4) + (n - 1) _

2(n - 1) - 3. By Theorem 4.2, if A(G - v1) < n - 2, then there is a

packing it of T - x into G - vl unless T - x - 3K2 and G - vl = 02 U K4.

It is clear that it can be extended to a packing of T into G. If T - x =

3K2 and G - vl = 02 U K4, then T and G are shown in Fig.4.4 and in this

case it is easy to see that T can be packed into G. On the other hand,

if A(G - v1) = n - 2, then G is the graph shown in Fig.4.5 and in this

case it is also easy to see that T can be packed into G.

0

0

-0 0 0 0 0 v1

Figure 4.4 Figure 4.5
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Claim 4. The theorem is true if G has no isolated vertices.

If G has no isolated vertices, then G has at least one end-vertex.

By Claim 2, we assume that T # Sn. By Lemma 5.2 and induction, we may

assume that G = Sk U Cr U ... U Cr where k > 2 + 1 and r1 >...> rt

> 3. If G has a cycle-component Cm, m > 4, we can replace it by Cm-1

and obtain an (n - 1, n - 2) graph G'. By induction, there is a packing

it of T(1) - T - x with G'. Let y be the neighbour of x. We can now

modify it to a packing of T into G by mapping x to a vertex of Cm so that

xy does not overlap with an edge of C. Hence we assume that all the

components of G are triangles. Also, by induction, we can assume that

G = Sn_3 U C3 (otherwise since n > 8, we may pack T', where T' is

obtained from T by deleting three independent vertices, into G - C3 and

extend it to a packing of T into G). Now since k > 2 + 1, we have

n > 8. Thus by Lemma 5.3 (ii), if T # Pn, then T has three end-vertices

x, y and z such that the neighbour w of x does not belong to N(y) U

N(z). Let T(3) - T - {x, y, z}. Then we can obtain a packing of T into

G by mapping y, z and w to C3 and x on the centre of Sn_3. Finally if

T = Pn, it is easy to see that T can be packed into G = Sn_3 U C3.

Exercise 4.5

17 Let P6 be the tree shown below

P6

Prove that there does not exist a packing of three copies of P6

into K6 (Huang and Rosa [781).

2. For n > 7, let P' be the tree shown belown

Pn G-C-O ..

Does there exist a packing of three copies of Pn into K
n
?

3. Suppose r and s are integers such that r < s < n. Prove that any

three trees Tr, Ts and Tn can be packed into Kn (due to A.M. Hobbs

and B. Bourgeois, see Hobbs [811).
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4. Let Tn, Tn and Tn be any trees of order n > 7 such that A(Tn

'(T1), 0(Tn) < n - 3. Does there exist a packing of Tn, Tn and

Tn into Kn?

6. Packing a tree of order n with an (n,n) graph

In this section we shall find all the pairs {T,G} where T is a tree

of order n > 5 and G is an (n,n) graph such that T cannot be packed into

G. This result (Theorem 6.2) extends Theorem 5.4. However, in the proof

of Theorem 6.2 we need to apply Theorem 5.4 and some previous results.

We also need the following lemma which settles some special cases of

Theorem 6.2.

Lemma 6.1 Suppose T is a tree of order n > 5 and G is an (n,n) graph

such that t(T), A(G) < n - 1.

(i) If T = Sn and G # U Ci, then there is a packing of T and G.

(ii) If n > 7 and G has two vertices u1 and u2 such that

e(G - u1 - u2) < 1, then there is a packing of T and G.

(iii) If G = U Ci where i > 4 for at least one i and T # Sn or if

G = kC3 and T ¢ Sn or Sn, then there is a packing of T and G.

(iv) If G is obtained from G' = Sk U (U Ci), k > 4, by adding

an edge joining two non-adjacent vertices of G' none of

which is the centre of Sk, then there is a packing of T and G.

Proof. (i) By assumption, G has an isolated vertex or an end-vertex.

The proof of this result is similar to that of Claim 2 in Theorem 5.4.

(ii) By (i) we can assume that T # Sn. Hence, by Lemma 5.3(i),

T has two end-vertices x1 and x2 such that T(2) = T - x1 - x2 is not a

star. Let N(x1) _ {x3}, N(x2) _ {x4}, and let G' = G - u1 - u2. We

first observe that G has two vertices u3 and u4 such that u1u3, u2u4,

u3u4 ! G, for otherwise either G has at least n - 3 vertices each of

which is adjacent to both u1 and u2, and so r(n - 3) < e(G) < n, from

which it follows that n < 6, a contradiction; or G has n - 2 vertices

each of which is adjacent to both u1 and u2, and the remaining two
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vertices form a K2-component of G, from which it follows that G =

K2 U K3,2 and in this case T and G are packable; or d(ul) = n - 2 and

d(u2) < 2 and thus G has another vertex uJ # u2 so that ul and u2 play

the role of ul and u2. We now define a map a : V(T) + V(G) by setting

a(xi) = ui for i = 1, 2, 3, 4. If G' - On-21 it is clear that a can be

extended to a packing of T and G. If C' - On-4 U K2, since T' = T -

{xl, x2, x3, x4} is a forest of order at least 3, we can map two non-

adjacent vertices of T' on K2 to extend a to a packing of T and G.

(iii) It is not difficult to verify this result for n = 5, 6. (A

list of all trees of order 5 and 6 can be found in Harary [69; p.233].)

Hence we assume that n > 7. Suppose G contains C. for some m > 4. Let

Cm = v1v2 "' vmvl. Since T # Sn or Sn, T(2) exists (by Lemma 5.3(1)),

and by Theorem 5.4, there is a packing of T(2) and G - v1 - v2, which

can be extended to a packing of T and G. Hence we assume that G = kC3,

k > 3. Since T # Sn, Sn or Sn, T(4) exists (by Lemma 5.3(iii)). Hence,

by Theorem 4.2, there is a packing of T(4) and G - C3, which can be

extended to a packing of T and G.

(iv) Suppose e is an edge joining two vertices belonging to two

distinct components of G' or two non-adjacent vertices of C1 for

some i > 5, or two vertices of Sk. By Theorem 5.4, there is a packing

of T and G'. By the symmetry of G' and the fact that T contains no

cycles, we can pack T with C' so that e does not overlap with any edge

of T. Hence T and G are packable.

Finally, suppose e is an edge joining two opposite vertices v2 and

v4 of C4 = v1v2v3v4v1. Let G" = G - vi and let x be an end-vertex of T

such that T - x # Sn-l. By Theorem 5.4, there is a packing a of T - x

and G". Suppose the neighbour of x is y. By the symmetry of a

triangle, we can assume that a(y) # v2, v4 and so a can be extended to a

packing of T and C by mapping x to vl.

We shall need the following notation. Let C4 be the graph obtained

from C4 by adding an edge joining two opposite vertices and let S(6) be

the spider obtained from S4 by adding two new vertices each of which is

joined to one end-vertex of S4.
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Theorem 6.2 Suppose T is a tree of order n > 5 and G is an (n,n) graph

such that A(T), A(G) < n - 1. If {T,G} # {P59 O1 U C4}, {P69 02 U K4},

{S(6), 02 U K4}, or if G = U Ci where i > 4 for at least one i and T #

Sn or if G = kC3 and T # Sn or Sn, then there is a packing of T and G.

Proof. We first prove that this theorem is true if G is connected. It

is not difficult to verify this for n = 5. (A list of connected (5,5)

graphs can be found in Harary [69; p.2161.) Hence we assume that

n > 6. If G - Cn, then by Lemma 6.1(iii), T and G are packable unless

T - Sn. Suppose G # Cn. Now by Lemma 6.1(i), we assume that T # S.

Since G is connected and G # Cn, G has an end-vertex u. Let v be the

neighbour of u. We consider two cases.

Case 1. d(v) < n/2.

Since T # Sn or Sn, by Lemma 5.3(1), T(1) exists. If G - u # Cn-1

and A(G - u) < n - 2, then by induction, there is a packing of T(1) and

G - u. Thus, by Lemma 5.2, T and G are packable.

Suppose G - u = Cn_1. Then by Theorem 5.4, there is a packing a

of T and G - uv. Since T # Sn or Sn, by the symmetry of Cn_11 we can

assume that no edge of T lies on the edge uv in the packing a, and so a

is also a packing of T and G.

Suppose A(G - u) > n - 2. If n = 6, then G is the graph given in

Fig.4.6 and we can verify that T and G are packable. If n > 7, then by

Lemma 6.1(11), T and G are packable.

Figure 4.6

Case 2. d(v) > n/2.

If G has two end-vertices u1 and u2 with distinct neighbours v1 and

v2 such that d(v1), d(v2) > n/2, then the case that n > 7 is settled by

Lemma 6.1(11), and the case that n = 6 can be verified directly. Hence

we assume that any end-vertex of G is adjacent to v. Since G is

connected, G has exactly one cycle. Hence G - G1 or G2, where G1 and G2
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are as shown in Fig.4.7.

C

u

G
I

G2

Figure 4.7

Suppose G = G1. If n = 6, then G is as given in Fig. 4.8(a) and

we can verify that T and G are packable. Hence we assume that n > 7 and

by Lemma 6.1(11), we can further assume that m > 6. Since T # Sn or Sn,

by Lemma 5.3(1), T(2) exists and thus by Theorem 5.4, there is a packing

a of T2 and G1 - v1 - v2 # Sn-2. This packing can be extended to a

packing of T and G1.

(a)

Figure 4.8

(b)

Suppose G = G2. If n = 6, then G is as given in Fig. 4.8(b) and we

can verify that T and C are packable. Hence we assume that n > 7 and by

the previous argument we can further assume that m - 3 and that the

length of the path from v to v2 is at least 3. Hence n > 8. If T # Pn,

then by Lemma 5.3(11), T(3) exists, and by Theorem 5.4, there is a

packing a of T3 and C' - G2 - v2 - v3 - v4 # Sn-39 where v3 and v4 are

the other two vertices of the triangle. This packing a can be extended

to a packing of T and G2. If T - Pn, let ul and u2 be the two

end-vertices of T and let u3 be a middle vertex of T which is not

adjacent to ul or u2. Then any packing of T - u1 - u2 - u3 and G' can

be extended to a packing of T and G2.

We next prove that this theorem is true if G is not connected.
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Case (i). G has an isolated vertex u.

Let v s G be such that d(v) = A(G) > 3. Then G' = G - u - v is an

(n - 2, q) graph, where q < n - 3 and A(GI) < n - 3 if n > 7. Let x be

an end-vertex of T such that its neighbour y has maximum valency among

all the vertices which are adjacent to the end-vertices of T. Then

T - x - y # Sn-2. Hence if n > 7, then by Theorem 5.4, there is a

packing a of T - x - y and G'. This packing can be extended to a

packing of T and G by mapping x to v and y to u. If n = 5, then G has

only one isolated vertex. Thus G = 01 U C4 and if T # P5, T and G are

packable. If n - 6 and G has only one isolated vertex, then it is not

difficult to verify that T and C are packable for any T. (A list of

(6,6) graphs having exactly one isolated vertex can be found in Harary

[69; p.217].) If n = 6 and G has two isolated vertices, then G = 02 U

K4 and so T and G are packable except when T = P6 or S(6).

Case (ii). G has no isolated vertices.

We can verify that this theorem is true for n = 5 and 6. (There

are no disconnected (5,5) graphs having no isolated vertices and there

are only two disconnected (6,6) graphs having no isolated vertices.)

Hence we assume that n > 7.

Suppose G has a tree-component. It is clear that if T = Si!,, then T

and G are packable. Hence we assume that T # Sn and so by Lemma 5.3(i),

T(1) exists. Let u be an end-vertex of G and let v be the neighbour of

u. Then, by induction, T(1) and G - u are packable. Now if d(v) < n/2,

then by Lemma 5.2, T and G are packable. Hence we assume that d(v) > 2

and thus the tree-component of G is Sk, where 2k > n and thus k > 4.

Hence G - Sk is the union of cycles with an additional edge joining two

vertices of G - Sk. However, by Lemma 6.1(iv), T and G are also

packable in this special case.

Suppose that all the components of G are (ni, ni) graphs. By Lemma

6.1(iii), we can assume that G has at least one component which is not a

cycle. Such a component has an end-vertex. If G has at least two

components which are not cycles, then one of these components has an

end-vertex u whose neighbour v is such that d(v) < n/2. In this case,

it should be clear, by now, that T and G are packable. Hence we assume
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that G has only one component H which is not a cycle and all the other

components of G are cycles. Also, since G has an end-vertex, we may

further assume that T # Sn. Suppose G has a cycle v1v2...vmvl where

m > 4. Then any packing of T(2) with G - v1 - v2 can be extended to a

packing of T and G. Hence we assume that all the cycle-components of G

are triangles, i.e. G = H U kC3. In this case, it is not difficult to

see that if T = Sn, then T and G are packable. On the other hand, if

T # Sn, then by Lemma 5.3(iii) and Theorem 4.2, there is a packing of

T(4) and G - C3 which can be extended to a packing of T and G.

Corollary 6.3 Suppose T is a tree of order n > 7 and G is an (n,n)

graph such that A(T), A(G) < n - 1. Then T and G are packable except

(i) G = U Ci where i > 4 for at least one i and T - Sn; or (ii) G - kC3

and T = S' or S".n- n
Exercise 4.6.

1. Find a tree T of order n > 5 and an (n, n + 1) graph G such that

(i) A(T), A(G) < n - 1; (ii) {T,G} is neither one of the forbidden

pairs given in Theorem 6.2 nor {T,G'} is one of the forbidden pairs

given in Theorem 6.2 and G is obtained from G' by adding an edge;

and (iii) T cannot be packed with G.

2. Does there exist an infinite family of pairs {T,G} where T is a

tree of order n > 7, G is an (n, n + 1) graph such that (i) A(T),

A(G) < n - 1; (ii) {T,G} is neither one of the forbidden pairs

given in Corollary 6.3 nor {T,G'} is one of the forbidden pairs

given in Corollary 6.3 and G is obtained from G' by adding an edge;

and (iii) T cannot be packed with G?

7. Packing two (n, n - 1) graphs

Burns and Schuster [78] proved that if G is an (n, n - 1) graph

where n > 6 if n is even and n > 9 if n is odd, then G is embeddable in

G if and only if G is neither Sn nor K3 U Sn_3 (n > 8). Sauer and

Spencer [78] proved that any two (n, n - 2) graphs are packable. In
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this section we shall prove that if G and H are two (n, n - 1) graphs,

n > 5, which are not stars, then except for 12 forbidden pairs

for n < 11 and for an infinite family where G = K3 U Sn_3 = H, G and H

are packable. This theorem (due to Teo and Yap [-a]) generalizes the

above mentioned results and Theorem 5.4. From this theorem, it follows

that if n > 12, then any two (n, n - 1) graphs G and H which are not

stars, are packable unless G - K3 U Sn_3 = H.

To prove this, we need to apply Theorem 5.4 and Lemma 7.1. We also

need the following notation. Suppose G is a graph and G contains Cr.

Then, by abusing the notation, the subgraph of G induced by V(G) - V(Cr)

is denoted by G - Cr.

Lemma 7.1 Let C be an (n, n - 1) graph, n > 6, which is not a star.

Suppose G # K3 U Sn_3 (n > 7), 03 U K4 or 01 U 2K3. Then G contains

Cr for each r - 3, 4,..., n - 2 such that Cr covers at least r + 1

edges of G and G - Cr has an isolated vertex.

Proof. Let A be the set of isolated vertices of G, let B be the set of

nontrivial tree-components of G, and let C be the set of other

components of G.

We first prove that this lemma is true for r = 3. If C = 4, then

C is a tree. Suppose G is a path given by x1x2 ... xn, then {x2,x4,x6}

is a required C3. If G is not a path, then since G # Sn, G has three

end-vertices u, v and w such that u and v are not adjacent to x where x

is the neighbour of w. It is clear that {u,v,x} is a required C3.

Hence we assume that C # 4. We consider two cases separately.

Case 1. A - .

We need only to consider the case IBI = 1 IC because if

IBI + ICI > 3, then we can choose three vertices for C3 from three

components of G. Let B - {T} and let C = {H} where H is a (t,t) graph.

If t > 4 or if H - K3 and T # Sn_3, n > 7, then it is easy to find a

required C3.

Case 2. A # 0.

We first note that A # $ implies that C # 4. If B # 4, then
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AM > 3 for at least one H e C and we can choose x e A, y e V(T)

where T e B, and z e V(H) such that dH(z) > 3, for the three vertices of

a required C3. Hence, from now on, we assume that B = .

Suppose JAI > 2. Then the lemma is obviously true if either

ICJ > 2 or if C = {H} and H is not a complete graph. On the other hand,

if H = Ks, then since G is an (n, n - 1) graph, s > 4. If s = 4, then

G = 03 U K4 is a forbidden graph. If s > 5, then JAI > 3 and we can

choose two vertices from A and one vertex from K. to form a required C3.

Suppose JAI = 1. If ICI > 2, then the lemma is true unless ICI = 2

and the two graphs in C are triangles, i.e. G = 01 U 2K3, a forbidden

graph again.

Finally we consider the case JAI = 1 = ICI. Let C = {H}. For

n = 6, we can verify that 01 U H has a required C3. (There are five

connected (5,5) graphs, see Harary [69; p.2161.) Hence we assume that

n > 7. Now, by Theorem 4.2, C3 can be embedded in Ti. . If we cannot find

an embedding of C3 in H so that C3 covers at least four edges of H, then

C3 covers exactly three edges of H in such a way that these three edges

are all incident with the same vertex, x say. Now each of the other

vertices in H - (C3 U {x}) must be of valency one and all of them are

incident with x also. Hence H - Sn_1, contradicting the fact that H is

an (n - 1, n - 1) graph.

We next prove that this lemma is true for 4 < r < n - 2.

Let V(G) _ {x1, x2, ..., xn} with

d(x1) )- d(x2) > ... > d(xk) > d(xk+l) > ... > d(xn),

where d(xk) ¢ 0 and d(xk+l) = 0. Let D = {x1, ..., xk} and let H be the

subgraph of G induced by D.

Case M. d(xk) > 4.

In this case, JAI < (n+l)/2. For any 3 < r < n - 2, we have [Z] +

1 < n/2. Thus we can choose [r, vertices from D (if IDI > [Z1) and

[ 21] vertices from A; or IDI vertices from D (if [Z) > IDI) and r - IDI

vertices from A, to form a required Cr.
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Case (ii). d(xk) = 3.

In this case, JAI >
n

> 3. Let u e A, let w = xk and let e =

vw e G. Then G' = G - u - e is an (n - 1, n - 2) graph which is not a

star. Since G' contains at least two isolated vertices and dC,(w) = 2,

G' cannot be a forbidden graph. By induction (we can check through the

list of (6,5) graphs given in Harary [69; p.219] to verify that the

lemma is true for all (6,5) graphs), G' contains Cr, r = 3, ..., n - 3,

so that Cr covers at least r + 1 edges of G' and G' - Cr has an isolated

vertex. If w e Cr5 then Cr can be turned into a required Cr+l for G by

joining u to w and z where wz a Cr and deleting wz from Cr. Similarly,

if v e Cr, we can also obtain a required Cr+1 for G. Now if w, v t Cr

but r > 5, then since dG,(w) = 2, w is not adjacent to at least two

neighbouring vertices, x and y say, in Cr and so we can turn Cr into a

required Cr+l for G by joining w to x and y and deleting xy from Cr. It

remains to show that G contains a required C4 and C5. Let a, b e A.

Then wavbw forms a required C4. Also if JAI > 4, then for a, b, c e A,

x, y e D, xaybcx forms a required C5. The case that JAI = 3 leads to

n = 7 and G = 03 U K4, a forbidden graph.

Case (iii). d(xk) 2.

Suppose A ¢ 4. Let w = xk, e = wv e G and let G' = G - a - e,

a e A. Then G' is an (n - 1, n - 2) graph which is not a star and is

not a forbidden graph. (This is always possible because d(w) < 2.) By

induction, G' contains Cr, for r = 3,4,...,n - 3 satisfying the

conditions of the lemma. Then as in the proof of Case (ii), we can turn

Cr into a required Cr+1 in G.

Suppose A = 4. Then G contains at least one end-vertex x and G'

G - x is an (n - 1, n - 2) graph. We note that since G # Sn_3 U K3, G

has an end-vertex x so that G' is not a forbidden graph. If n > 7, then

by induction, contains Cr, r = 3,4,...,n - 3 satisfying the

conditions of the lemma. Each Cr can be turned into a required Cr+1

in 'd by joining x to two neighbouring vertices of Cr where none of these

two neighbouring vertices is the neighbour of x.

Finally, we can verify that the lemma is true for r = 4 and n = 6.

(A list of (6,5) graphs G such that G contains no isolated vertices can

be found in Harary 169; p.219).)
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The graphs G(5), H7 and G(8) are depicted in Fig.4.9.

0 0

Figure 4.9

0

Theorem 7.2 Suppose G and H are two (n, n - 1) graphs, n > 5, which

are not stars. If {G,H} is not one of the following thirteen pairs:

(1) {P2 U K3, P2 U K3}, (2) {01 U C4, 01 U C4}, (3) {G(5), P2 U C3},

(4) {03 U K4, P2 U C5}, (5) {03 U K4, P4 U K3}, (6) {03 U K4, H7},

(7) {O1 U 2K39 S4 U K3}, (8) {O1 U 2K3, 03 U K4},

(9) {O1 U 2K3, 01 U 2K3}, (10) {G(8), P2 U 2K3},

(11) {02 U P2 U K4, P2 U 2K3}, (12) {O6 U K59 P2 U 3K3}, and

(13) {K3 U Sn-3' K3 U Sn-3}, n > 8,

then there is a packing of G and H.

Proof. By Theorem 5.4, we can assume that both G and H are not

connected. For n - 5, we can verify that there are three forbidden

pairs given by (1), (2) and (3). (There are three (5,4) graphs which are

not connected, see Harary [69; p.2161.) Hence we assume that n > 6. Let

F be the forbidden pairs given in Theorem 4.2.

Case 1. G has an isolated vertex u.

(i) Suppose A(H) > 3.

Let v e V(H) be such that d(v) - A(H). By the choice of v,

A(H- v) <n- 2. Hence, if A(G-u) <n- 2 and {G-u, H-v} AF,
then (since e(G - u) + e(H - v) < 2(n - 1) - 3), by Theorem 4.2, there

is a packing of G - u and H - v, which can be extended to a packing of G

and H. If {G - u, H - v} a F, then {G - u, H - v} - {02 U K4, 3K2},

{2K3, 03 U K3} or {3K31 05 U K4} and we deduce that the forbidden pairs

for {G, H} are given by (6), (7) and (8). On the other hand, if

184



0(G - u) = n - 2, let w e G be such that d(w) = n - 2. Then G is the

graph given in Fig.4.10 below. In this case, if H has an isolated

u

0

Figure 4.10

vertex x, we can map w to x to obtain a packing of G and H; otherwise H

has an end-vertex y and we can map w to y, u to z (z is the neighbour of

y), to obtain a packing of G and H.

(ii) Suppose t(H) = 2.

In this case, H is the union of some cycles and a path. Since G

has an isolated vertex, by Lemma 7.1, if G # 01 U 2K3 or 03 U K4, we

can assume that G contains Cr for each r = 3, 4,..., n - 2 such that Cr

covers the maximum number of edges of G (which is at least r + 1) and

C - Cr has an isolated vertex. Suppose H # 01 U Cn-1. Let Cr be the

smallest cycle-component of H. Then e(G - Cr) + e(H - Cr) < (n - 1) -

(r+1)+(n-1) - r= 2(n - r) - 3. Hence if A(H -Cr) < n-r-1,
i.e. H - Cr P2 or P3, and if {G - Cr, H - Cr} t F, then by Theorem

4.2, G - Cr and H - Cr are packable, from which it follows that G and H

are packable. However, if H - Cr = P2 or P3, then r - n - 2 or n - 3

and e(G - Cr) = 0 or 1. Thus G and H are also packable. Next, if

{G - Cr, H - Cr} a F, then by Theorem 4.2, it must be either {02 U K3,

K2 U K3} or {04 U K4, K2 U 2K3}. Hence, in either case r = 3, and n = 8

or 11.

Let V(C3) _ {a,b,c}. For n = 8, let the two isolated vertices of

G - C3 be v and w, and let the three vertices of the triangle in G - C3

be x, y and z. Our aim now is to add four edges joining {a,b,c} to

{v,w,x,y,z} so that we can single out the forbidden pairs for {G, H}.

By symmetry, we need only to discuss the following three possibilities:

(i) ax, ay, az, av e G yield the forbidden pair (10).

(ii) ax, ay, az, by e G yield the forbidden pair (11).
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(iii) In each of the other cases we can embed C3 in G so that C3 covers

more than four edges of G, a contradiction to the assumption that

Cr covers the maximum number of edges of G. (We call this kind

of argument a maximal covering argument.)

For n = 11, applying the maximum covering argument, we find only

one forbidden pair (12).

Next, suppose G = 03 U K4. Then n = 7 and H = 01 U 2K3, P2 U C51

P3 U C4 or P4 U C3. In this case we can easily obtain the forbidden

pairs (4), (5) and (8). If G - 01 U 2K3 then we obtain the forbidden

pair (9). Also if H = 01 U Cn_1, then by interchanging the role of G

and H, we can assume that G = 01 U Cn_1 and thus G and H are packable.

Case 2. Both G and H have no isolated vertices.

Since both G and H are not connected, each of them has at least one

tree-component. Suppose G has no end-vertex u whose neighbour u' is

such that d(u') < n/2. Then G = St U Cr, U ... U Cr , where
i

t > ,f + 1, 3 < r1 < r2 < ... < ri. Hence n > 8. By Lemma 7.1,

if H # Sn_3 U K3, then H contains Cr such that H - Cr has at most
1 1

n - (r1 + 1) - 1 = n - r1 - 2 edges and has an isolated vertex.

Hence, by Theorem 4.2, if G - Cr # St, then since {G - Cr , H - Cr } F,

1 1 1

there is a packing of G - Cr and H - Cr. Also, if G - Cr = St,
1 1 1

then since H - Cr has an isolated vertex, there is also a packing

of G - C and H - C In either case, the packing of G - C and
r1

r1

r1

H - Cr can be extended to a packing of G and H. On the other hand,

if H - Sn_3 U K3 and G # Sn_3 U K3, then by interchanging the role of G

and H in the above argument, we can see that G and H are packable. This

shows that if G has no end-vertex u whose neighbour u' is such that

d(u') < n/2, then there is always a packing of G and H. The case that

G = Sn_3 U K3 - H, n > 8 yields the forbidden pair (13).

By the previous discussion, we can now assume that G (resp. H) has

an end-vertex u (resp. v) whose neighbour u' (resp. v') is such that

dG(u') < n/2 (resp. dH(v') < n/2). Thus, by Lemma 5.2, if G - u and

H - u are packable, then G and H are packable. It remains to consider
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the case that G - u and H - v are not packable. We distinguish two

cases.

(i) At least one of G - u and H - v has an isolated vertex.

Suppose G - u has an isolated vertex. Since G has no isolated

vertex, G - u has exactly one isolated vertex and thus G has K2 as a

component. Now by examining the forbidden pairs obtained in Case 1

(note that H has no isolated vertex and H - v has at most one isolated

vertex), {G - u, H - v} must be one of the forbidden pairs (2), (3), (7)

and (9).

If {G - u, H - v} is the forbidden pair (2), then G = K2 U C4 - H

and it is easy to see that G and H are packable. If {G - u, H - v} is

the forbidden pair (3), then H = P3 U C3, and G and H are packable. If

{G - u, H - v} is the forbidden pair (7), then G = K2 U 2K3 and H =

S5 U K3, and G and H are packable. If {G - u, H - v} is the forbidden

pair (9), then G = K2 U 2K3 = H, and G and H are packable.

(ii) Both G - u and H - v have no isolated vertices.

By the previous argument and by induction, G and H are always

packable unless G - u = Sn_4 U K3 = H - v and thus G = Sn_3 U K3 = H.

The proof of Theorem 7.2 is complete.

Exercise 4.7

17 Applying Theorem 7.2, show that if G is an (n, n - 1) graph where

n > 6, then G is embeddable in G if and only if G is neither S n nor

K3 U Sn-3 (n > 8).

2: Applying Theorem 7.2, show that any two (n, n - 2) graphs are

packable.

3t Characterize the (n, n) graphs G, n > 5, such that G can be packed

into its complement (Faudree, Rousseau, Schelp and Schuster [79]).

4t Suppose G is a graph of order n. Prove that if e(G) < 6 n - 2, G

Sn and G contains no cycles of length 3 or 4, then G can be packed

into its complement (Faudree, Rousseau, Schelp and Schuster [79]).
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5* Prove that every non-star graph which contains no cycles of length 3

or 4 can be packed into its complement (Faudree, Rosseau, Schelp and

Schuster [79]).

8. Packing two graphs of order n having total size at most 2n - 2

In this section, we shall apply the results of sections 4 to 7 to

find all the forbidden pairs {G, H} where G and H are graphs of order

n > 5 such that A(G), A(H) < n - 1, e(G) + e(H) < 2n - 2, and G and H

are packable. This result (due to Teo and Yap [-b]) extends

Theorem 4.2.

We shall need the following lemma whose proof is similar to that of

Lemma 4.1.

Lemma 8.1 Let T be a tree of order p and let G be a graph of order n.

Suppose4 <2p<n (n> 5), A(G) <n- 1 andn<e(G) <n+2-2. Then
except when T = P2 and G - 02 U K4, T can be packed into G such that T

covers at least p + 2 edges of G and A(G - T) < n - p - 1.

Proof. The proof is by induction on n and p. The proof that the lemma

is true for p = 2 is left as an exercise (Ex.4.8(1)).

We now prove that the lemma is true for p = 3. Suppose T is a path

xyz. We map x to a vertex u of G such that d(u) = A(G), y to a vertex

v ! N(u) and is of maximum possible valency, and z to a vertex w (# u)

such that w E N(v) and is of maximum possible valency. Then T covers at

least five edges of G. Now if A(G - T) > n - 4, then 3(n - 4) <

-T n - 2, from which it follows that n = 6 and e(G) = 6. However, when

n = 6 and e(G) - 6, the lemma is clearly true.

Hence we suppose that p > 4 and n > 8. Since n < e(G) <

n + P - 2, 6(G) < 2. The case that 6(G) = 0 can be settled in a similar

way as in the proof of Lemma 4.1. The case that 6(G) = 1 can also be

settled in a similar way as in the proof of Lemma 4.1 except that the

star-component Sk (k >

2

+ 1) has to be replaced by an (m, m) graph H

such that H has no end-vertex u whose neighbour v has valency d(v) < Z.

Finally, suppose 6(G) = 2. Let u be a vertex of G such that d(u) = 2

188



and let N(u) _ {v,w}. The case that t(G - u) - n - 2 can be settled as

in Case 2 of the proof of Lemma 4.1. Hence we assume that t(G - u) <

n - 2. We add a suitable edge e to G - u so that G' = G - u + e is such

that A(G') < n - 2 and n - 1 < e(G') n - 1 + P - 2 < n - 1 +

p
- - - 2. Thus, by induction, if T is a tree of order s < p - 1, there

is a required packing a of T and G'. If T covers at least s + 3 edges

of G', or if T covers exactly s + 2 edges of G' which includes the edge

e, but v e a(T) or w e a(T), then T covers at least s + 2 edges of G - u

and a is a required packing of T and G. However, if v, w t a(T), we can

map an appropriate vertex of T to u so that a can be modified to yield a

required packing of T and G. The remaining case is that p =2 . But in

such case, e(G) = n and G is a union of some cycles and the lemma is

obviously true.

We shall now give a complete characterization for packing two

graphs G and H of order n > 5 such that A(G), A(H) < n - 1 and e(G) +

e(H) < 2n - 2.

In view of Theorem 7.2, we can assume that G is an (n, n - k) graph

and H is an (n, n + k - 2) graph where k > 2.

We first consider the case k > 3. In this case, A(H) > 3. Since

e(G) - n - k, k > 3, G has at least k tree-components. Let T be a tree-

component of G whose order p is minimum among all the tree-components of

G. Then kp < n and thus k < n/p. Hence e(H) < n + P - 2. By Lemma

8.1, there is a packing of T into H so that H' = H - T is an (m, q)

graph where m = n - p, q < m + k - 4 and A(HI) < m - 1. Now if G'

G - T and H' are packable, then G and H are packable. Hence

for k > 3, the forbidden pairs {G, H} are generated from the forbidden

pairs {G', H'} which are given in Theorem 4.2. By examining the

forbidden pairs givenin Theorem 4.2, we know that there are no forbidden

pairs for k > 5; for k = 4, the forbidden pairs {G', H'} are

{3K2, 02 U K4}, {03 U K322K3} and {05 U K4, 3K3}; and for k = 3, the

forbidden pairs {G', H'} are {2K2, 01 U K3}, {02 U K3, K2 U K3},

{2K2 U K3, 03 U K4} and {04 U K4, K2 U 2K3}.

It is not difficult to verify that {3K2, 02 U K4} generates (1)

{4K2, 03 U K5}, {03 U K3, 2K3} generates (2): {04 U K3, K3 U K4}, and
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{05 U K4, 3x3} generates (3): {06 U K4, 2K3 U K4}.

It is also not difficult to verify that {2K2, 01U K3} generates

(4): {O1 U 2K2, 01 U K4}, (5): {3K2, K2 U K4}, (6) and (7); {02 U K3,

K2 U K3} generates (8): {03 U K3, K2 U K4} and (9); {2K2 U K3, 03 U K4}

generates (10): {3K2 U K39 04 U K5}; and {04 U K4, K2 U 2K3} generates

(11): {05 U K4, K2 U K3 U K4} and (12). (The forbidden pairs (6), (7),

(9) and (12) are depicted in Fig. 4.11.)

--oC

0

G G QoOo
0-G 1P o 010

(6) (7) (9)

Figure 4.11

t

(12): {05 U K4, H9}

The case that T = P2 and H = 02 U K4 yield the forbidden pair

(5): {3K2, 02 U K4}.

We next consider the case k = 2. First suppose G has an isolated

vertex u. Let v be a vertex of H such that d(v) = A(H). Then G - u

and H - v are respectively (n - 1, n - 2) and (n - 1, n - A(H)) graphs.

Again any forbidden pair {G, H} must be generated from some forbidden

pair {G - u, H - v}. Now if A(H) > 3, and A(G - u) < n - 2, then by

Theorem 4.2, the forbidden pairs {G - u, H - v} are {O1 U K3, 2K2},

{K2 U K31 02 U K3}1 {03 U K4, 2K2 U K3} and {K2 U 2K3, 04 U K4}. We

thus obtain the forbidden pairs (13), (14): {O1 U K2 U K31 02 U K4}1

(15): (04 U K4, 2K2 U K4}, (16) and (17). (The forbidden pairs (13),

(16) and (17) are depicted in Fig.4.12.) On the other hand, suppose

a 0 C o 0

o 0

0

i

(13) (16)

Figure 4.12

O

r
0

Q- lO O

T-t+ )

(17)
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A(G - u) = n - 2. Since A(H) > 3, H has a vertex w such that d(w) < 1.

It is easy to see that in this case G and H are packable.

We next consider the case A(H) = 2. Since e(H) = n, H is the union

of some cycles and thus H - v is the union of some cycles and a path of

order at least two. Now G - u and H - v are (n - 1, n - 2) graphs.

Hence if G - u # Sn_1, n > 6, then applying Theorem 7.2, we have the

forbidden pairs for {G - u, H - v}: {P2 U K3, P2 U K3}, {G(5), P2 U K3),

{03 U K4, P2 U C5}, {03 U K4, P4 U K3}, {G(8), P2 U 2K3},{02 U K2 U K4,

P2 U 2K3}, and {06 U K5, P2 U 3K3}. From these pairs, we obtain the

following forbidden pairs for {G, H}, namely, (18): {01 U K2 U K3, 2K3),

(19), (20): {04 U K4, K3 U C5}, (21), (22): {03 U K2 U K4, 3K3} and

(23): {07 U K51 4K3}. (The forbidden pairs (19) and (21) are depicted in

Fig. 4.13.) However if G - u = Sn-1, then we have the forbidden pair

{G(9), 3K3} =

(19) (21)

Figure 4.13

(24): 1o1U 'n_1, U Ci}. Also it is clear that there are only two (5,3)

graphs G # 01 U S4 such that G contains an isolated vertex, namely,

01 U P4 and 02 U K3. In this case we obtain the forbidden pair (25):

{02 U K3, C5).

Finally we consider the case that G has no isolated vertices. Since

G is an (n, n - 2) graph, C has at least two tree-components. Let T be

a minimal tree-component of G. Then 2 < ITI = p < n , and by Lemma 8.1,

if H # 02 U K4, there is a packing of T into H such that T covers at

least p + 2 edges of H and A(H - T) < n - p - 1. Let G' = G - T and H' _

H - T. Then G' is an (m, m - 1) graph and H' is an (m, q) graph where

q < m - 2. Thus if G' # Sm then the forbidden pairs {G, H} are

generated from the forbidden pairs {G', H'} given in Theorem 4.2 in

which G' has a nontrivial tree-component. There are two such pairs,

namely, {K2 U K31 02 U K3} and {K2 U 2K31 04 U Y. From these two
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pairs, we obtain the forbidden pairs (26): {2K2 U K3, O1 U K2 U K4},

(27) and (28): {2K2 U 2K3, 05 U K5}. (The pair (27) is depicted in

Fig.4.14.) On the other hand, if G' - Sm, then G = T U Sm where

O-C G O

1O -O O

(27)

Figure 4.14

m > n/2. In this case, by adding an appropriate edge e to G, we obtain

a tree G + e # Sn; and by Theorem 6.2, if n > 7, there is a packing of

G + e and H, unless H = kC3. In this case we obtain the forbidden pair

(29): {K2 U Sn_2, kC3}. For n < 6, G = P2 U S3, P2 U P4, P2 U S4 or

or 2S3. Hence for an appropriate edge e, G + e = P51 S6 or P6. By

checking against the forbidden pairs given in Theorem 6.2, we obtain the

forbidden pair (30): {p2 U P4, 02 U K4}. It remains to consider the

case H - 02 U K4. In this case we obtain the same forbidden pair (30).

The above thirty forbidden pairs, together with the forbidden pairs

given in Theorems 4.2 and 7.2, yield all the forbidden pairs for the

packing of two graphs G and H of order n > 5 such that A(G), A(H) <

n - 1 and e(G) + e(H) < 2n - 2. Because there are too many forbidden

pairs, for simplicity, we state the above result only for n > 9.

Theorem 8.2 Suppose G and H are graphs of order n > 9 such that A(G),

A(H) < n - 1 and e(G) + e(H) < 2n - 2. If {G, H} is not one of the

following thirteen pairs:

{3K3, 05 U K4), {3K2 U K3, 04 U K51, (05 U K4, K2 U K3 U K4),

{05 U K4, H9), {G(9), 3K3), {03 U K2 U K4, 3K3), {06 U K4, 2K3 U K4},

{2K2 U 2K3, 05 U K5}, {06 U K5, K2 U 3K3), {07 U K5, 4K31,

(O1 U Sn-1, U Ci), (K2 U Sn-2, kC3) and {K3 U Sn-3, K3 U Sn-3},

then G and H are packable.
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Corollary 8.3 Suppose G and H are graphs of order n > 13. If {G, H} is

not one of the following three pairs:

{O1 U Sn_1, U Ci}, {K2 U Sn-2, kC3} and {K3 U Sn_3, K3 U Sn_3},

then G and H are packable.

Exercise 4.8

1. Let G be a graph of order n > 5 such that G(G) < n - 1 and n < e(G)

< 3 n - 2. Prove that if G # 02 U K4, then P2 can be packed into G

such that P2 covers at least four edges of G and A(G - P2) < n - 3.

2. Suppose Di - (Vi, Ai), i = 1, 2 are digraphs of order n. We say

that D1 and D2 are packable if there exists a bijection a : v1 + v2

such that if (x, y) a A
1
then (a(x), a(y)) E A2. Prove that if

IAIIIA2I < n(n - 1), then D1 and D2 are packable. Applying the

above result, show that if IAII + IA2I < 2n - 2, then D1 and D2 are

packable (Benhocine, Veldman and Wojda [83]).

3. Characterize the pairs of digraphs D1 - (V1, A1) and D2 = (V2, A2)

of order n, such that All + IA21 - 2n - 1, for which D1 and D2 are

not packable (Benhocine, Veldman and Wojda [83]).

4* For integers k and n satisfying 1 < k < n(n - 1), denote by f(n,k)

the minimal number such that there exist digraphs D1 - (V1, A1) and

D2 - (V2, A2) of order n, with IA1I = k and IA2I - f(n,k), for which

there is no packing of D1 and D2. Prove that for every m satisfying

2 < m < , f(n, n - m) - 2n - [ m ]. In particular, f(n, n - 2)

2n - [ ] (Wojda [85]).
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5. COMPUTATIONAL (BPLE)(ITY OF GRAPH PROPERTIES

1. Introduction and definitions

We can instal a graph G of order n into a computer by encoding the

entries of the upper triangular part of its adjacency matrix. One

problem arises naturally : "Can we find, in the worst case, whether the

graph G has a specific property P, without decoding all the n(n-1)/2

entries of the upper triangular part of its adjacency matrix?"

The main objective of this chapter is to introduce a Two Person

Game to tackle the above problem.

Let G n be the set of all graphs of order n and let F E- Gn be the

set of all graphs such that each of its members has property P. To see

that whether a graph G (of order n) possesses property P or not, it is

equivalent of showing whether G belongs to F or not. Hence we can

introduce the Two Person Game in a general setting and treat the graph

property as a special case.

Let T be a finite set of cardinality ITI = t and let p(T) be the

power set of T, i.e. the set of all subsets of T. We call F S p(T) a

property of T. A measure of the minimum amount of information

necessary, in the worst case, to determine membership of F is as

follows. Suppose two players, called the Constructor (Hider) and Algy

(Seeker), play the following game which we also denote by F. Algy asks

questions of the Constructor about a hypothetical set H c T. His

questions being of the form "does the element x (of T) belong to H?" to

which the Constructor answers "yes" or "no". The Constructor does not

need to have any particular set H in mind to begin with but as he

answers Algy's questions he is effectively constructing the set H.

Indeed, if Algy probes all the elements of T, then he will know

precisely which set H = T the Constructor is describing. In playing the

game F, Algy tries to select questions which enable him to decide as

quickly as possible whether or not the set H being constructed by the



Constructor is a member of F. The Constructor on the other hand tries

to keep Algy guessing for as long as possible. The (computational)

complexity of F, denoted by c(F), is the minimum number of probes needed

by Algy to determine membership of F assuming both Algy and the

Constructor play the game optimally. If c(F) = t, so that Algy has to

make all possible probes, then F is said to be elusive, and in this case

the Constructor wins the game F. Otherwise F is non-elusive and Algy

wins.

In order to systematize our discussion and to avoid possible

misunderstanding, we now give a more formal definition of the complexity

of a property F. A preset of T is an ordered pair X = (E,N) of disjoint

subsets E and N of T. Let PR(T) denote the collection of all presets of

T. For X = (E,N) c PR(T), denote by U(X) the union E U N. The preset

X = (E,N) is proper if U(X) # T, and full if U(X) = T. Let PR*(T)

denote the set of all proper presets of T. The preset Y = (E',N') is

said to be an extension of X = (E,N) if Y # X and E' =DE, N' 2 N, and in

this case we write X < Y. An algorithm on T is a function : PR*(T) + T

such that f(X) ¢ U(X) for any X e PR*(T). We call 4(X) the probe

prescribed by the algorithm 0 for the preset X. A strategy on T is a

function i : PR*(T) x T + PR(T) such that for X = (E,N) a PR*(T) and

x e T, f'(X,x) = X if x e U(X) and i(X,x) = (E U {x},N) or (E,N U {x}) if

x 0 U(X).

Let A(T) and S(T) denote respectively the sets of all algorithms

and strategies on T. A pair (4,P) e A(T) x S(T) generates a sequence of

presets of T

X0,0 = < XC, X1, ..., Xt

where X0 = (fl,+), Xi+1 = I(Xi, 4(Xi)), i < t and Xt is a full preset.

Thus X(4,i) is the sequence of presets given by the Constructor in

response to the successive probes 4(X1), 4(X2), ... by Algy.

Now let F be a property of T. For A, B e T we write A =_ B mod F if

either (i) A e F and B e F or (ii) A t F and B 4 F. Similarly, for

presets X = (E,N) and X' = (E',N') we write X =_ X' mod F if and only if

E = E' mod F. A preset X is determining for F, or F-determining, if X

Y mod F for every Y c PR(T) such that X < Y. Thus Algy does not need to

make further probes once a determining preset for F has been reached.
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Next, for F e p(T) and (4',*) a A(T) x S(T), we define c(F,$,*) _

min {k I Xk is F-determining} where <X0, XI, ..., Xt> = X(+,*). The

complexity of F can now be defined as

c(F) = min max c(F,+,*).
4eA(T) *cS(T)

Thus if the property F is elusive, then the Constructor has a winning

strategy 0 such that c(F,¢,i) = t for all e A(T), and if F is non-

elusive, then Algy has a winning algorithm m such that c(F,m,*) < t for

all i e S(T).

An element x of T is said to be critical for the preset X = (E,N)

in the game F if x ¢ U(X), X is not determining but either (E U {x}, N)

or (E, N U {x}) is determining for F. A property F of T is nontrivial

if F# 4 and F# p(T). F is monotone (downwards) if A e B e F implies

that A e F. The enumerating polynomial for F is

FF(z) _ N(F,i) zi
i < t

where N(F,i) is the number of i-element members in F. The group of

permutations on T that leave F invariant is denoted by r(F). If X(-- T,

r(X) is the stabilizer of X. Hence, if X e F, r(X) is a subgroup of

r(F).

Let G n be the set of all graphs having vertex set {O,1,...,n-1}.

Since a member G e G n is uniquely determined by its edge set, we shall

not distinguish between the graph G and its edge set E(G). A graph

(theoretical) property is a set Fs G n, which is closed under

isomorphism, i.e. if X, Y e G n and X = Y (X and Y are isomorphic), then

X = Y mod F. The capacity of a graph property F is the number of non-

isomorphic graphs in F. We call the elements of the edge set {ij I 0 t

i < j < n-i } of Kn places. Thus if F is a graph property and if Algy

and the Constructor play the game F described previously, then Algy will

successively probe different places of Kn and the Constructor will

indicate whether these probed places are edges or non-edges. We call a

preset (E,N) of G n a pregraph.

In this chapter, we shall find some elusive graph properties and
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some non-elusive graph properties. We shall study the diagram of a non-

elusive property, find a necessary condition (the so-called odd-even

balanced condition) for a property to be elusive, discuss the Aanderaa-

Rosenberg Conjecture, give a counterexample to the Rivest-Vuillemin

Conjecture, and find a lower bound for the computational complexity of

general graph properties. Some unsolved problems and conjectures will

also be given. The main reference of this chapter is the last chapter

of Bollobas' book : Extremal Graph Theory (Academic Press, 1978).

Exercise 5.1

17 Find all the members of the set of Hamiltonian graphs of order 5.

2. Let F be a property of T and let

F* = ]X T- T I T - X 0 F}.

Prove that (F*)* = F and that F is monotone if and only if F* is

monotone.

37 Show that if F is a nontrivial property of T such that T t F, then

Fmon ={
X I X= Z for some Z e F}

is a nontrivial monotone property.

4. Prove that, for any algorithm , there is an algorithm m' in which

Algy always probes a critical element first, if there is one, and is

such that the inequality

c(F,$,4')

holds for any strategy I (Milner and Welsh [74]).

5. Prove that c(F*) = c(F) for any graph property F (van Emde Boas and

Lenstra [74]).

6:` Is it true that c(F*) = c(F) for any property F?

7. Let F be a property of T and let Fc = p(T) - F. Prove that * is a

winning strategy for F if and only if it is a winning strategy for

Fc.

8* Let F be a property of T and let

F= {Y I Y = T - X, X e F}.

Prove or disprove that c(F) = c(F).
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2. Some elusive properties; the simple strategy +0

Holt and Reingold [72] were the first to prove that the

(computational) complexity of certain properties of directed graphs of

order n, like being strongly connected or cycle-free, have order

0(n2). Hopcroft and Tarjan [73] and Kirkpatrick [74] also obtained

lower bounds on the complexity of certain graph properties. In fact,

most of these properties can be proved to be elusive.

Best, van Emde Boas and Lenstra [74] and Milner and Welsh [74]

independently introduced a "simple" strategy for the Constructor. In

many situations this "simple" strategy is actually winning for the

Constructor and using this many natural graph properties like planarity

can be shown to be elusive. However, there are situations where the

graph property is elusive and yet this "simple" strategy fails, and to

find a winning strategy for the Constructor in such cases may be quite

difficult. For example, see Bollobas' proof [76] that for 2 < r < n the

property "G e G n contains a complete subgraph of order r" is elusive.

In this section, we shall first define this simple strategy *0 and use

it to prove that several graph properties are elusive. We shall also

apply some other strategies to produce further elusive graph properties.

The simple strategy *, is defined as follows : for any proper

preset X = (E,N) and x e T - (E U N), i0(X,x) = (E U {x},N) if and only

if there is Y c F such that E U {x} a Y. The following theorem is due

to Bollobas (78]. This theorem extends a theorem of Milner and Welsh

[74]. It gives a necessary and sufficient condition ensuring that *0 is

a winning strategy. We shall use the following lemma.

Lemma 2.1 The simple strategy *0 is a winning strategy in the game F in

which T t F if and only if it is a winning strategy in the game Fmon

where Fmon = {X I X = Z for some Z e F }.

Proof. Suppose *0 is a winning strategy in the game F. Then

t for any algorithm . Let

X0 < X1 < ... < Xt-1 < Xt, Xk = (Ek, Nk)

be the sequence of presets given by 0 and *0 and let xt be the last
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unprobed place. Then by the definition of *0 and the fact that T ¢ F,

Et_1 c F and xt is critical. However, by the definition of Fmon, Et-1 e

Fmon and xt is also critical for the preset Xt_1 in the game Fmon.

Consequently, O is also winning in the game Fmon.

Conversely, suppose 0 is winning in the game Fmon. Suppose the

sequence of presets given by *0 and any fixed algorithm is as above.

Then Et-1 a Fmon and xt is critical. Again, by the definition of Fmon

and the fact that Et-1 is now a maximal element in Fmon, Et-1 a F. The

last unprobed place xt is also critical for the preset Xt_1. Hence *0

is also winning in the game F.

Theorem 2.2 (Bollobas [78]) Let F -be a nontrivial property of T such

that T E F. Then the simple strategy *0 is a winning strategy if and

only if whenever x e X e F there are an element y e T - X and a set

Y e F such that (X - x) U {y)<-- Y.

Proof. Sufficiency. Assume that c(F,$,*O) = m < t for some algorithm

0. Let

X0 < X1 < ... < Xm, Xk = (E k , N

be the sequence of presets given by 4i and *0. By the definition of *0,

there is a set U such that Em E U e F. Hence for any V satisfying Em e

V e T, V e F and in particular X= T- Nm a F. Let x e T- (Em U NM).

Then by the assumption, there are an element y e T - X = Nm and a set Y

e F such that (X - x) U {y) a Y. Now if k + 1 = min {R I y e NR}, then

(Ek U {y}, NO < (Em U {y}, Nm - y) and thus EMU {y) c (X - x) U {y}

Y e F, contradicting the fact that *0 chose y a non-element.

Necessity. Suppose that *0 is a winning strategy in the game F.

By Lemma 2.1 and Ex.5.1(3), we can assume, without loss of generality,

that F is monotone. Suppose now that there exist X e F and x e X such

that if y e T - X then (X - x) U {y) is not contained in any member of

F. Put s = IXI and let ¢ be the algorithm that the first s - 1 probes

are on the places whose members are the elements of X - x and the last

(i.e. the tth) probe is whether x is an element of the hypothetical set

or not. Then the (t-1)st preset given by and *0 is (X - x, T - X).

Now there are only two sets extending this preset, namely, X - x and X.
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Since both of them belong to F, c(F,4,,*O) t t - 1, contradicting the

assumption that *0 is a winning strategy. //

Corollary 2.3 The following properties of G n are elusive:

(1) graphs having at most k edges where 0 < k < (2);

(2) forests of size k where 1 < k < n.

In the following, we give a nontrivial application of Theorem 2.2

(see Bollobas [78;p.408]).

Theorem 2.4 (Best, van Emde Boas and Lenstra [741) For n > 5, planarity

is an elusive property of G n

Proof. Suppose F is the set of all planar graphs of order n. We first

note that Kn ¢ F. We shall show that the simple strategy *0 is a

winning strategy for the Constructor. Suppose this is not so. Then by

Theorem 2.2, there exist a maximal planar graph G and ab a E(G) such

that C is the only maximal planar graph (of order n) containing G - ab.

Fix a planar embedding G' of G in the plane. Since G is maximal planar,

all the faces of G' are triangles. In particular, ab is the edge of two

neighbouring triangular faces, say abc and abd. Then cd a E(G), for

otherwise G - ab + cd would be another maximal planar graph containing

G - ab. Let cde and cdf be the two faces containing cd. If {e,f}

{a,b}, then abc, abd, cda, cdb are all the faces of G', so n - 4,

contradicting the assumption.

Figure 5.1

Hence we may assume that a ¢ {e,f}. Then of t E(G) since it would

intersect either cd or the path cad. Change the drawing of G - ab as

follows : join c to d inside the quadrilateral acbd instead of inside

the quadrilateral ecfd. Then we can join e to f inside the quadrilateral
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ecfd (see Fig.5.1), contradicting the assumption that G is the only

planar graph containing G - ab.

We now give two more examples of elusive graph properties. These

examples indicate that very often different strategies have to be used

for different graph properties.

Milner and Welsh [74] used an inductive argument to show that for

n > 3 the property of graphs G of order n having a vertex of valency at

least 2 is elusive. Their method fails for higher valencies of vertices

of G. In the proof of the following example a different approach

similar to theirs is used.

Example 1 The property of graphs of order n > 4 having a vertex of

valency at least 3 is elusive.

Proof. Let S be the set of all pregraphs (E,N) such that (i) E has no

vertex of valency at least 3, (ii) E does not contain a cycle Cr with

r < n - 1 and (iii) if E is a path Pn having end-vertices x and y, then

xy a N.

We define a strategy tS as follows : for any pregraph X - (E,N) and

any probe x e Tn - (E U N), where Tn - E(Kn), put *S(X,x) _ (E U {x}, N)

if and only if E U {x} can be extended to a member of S.

It is not difficult to show that the penultimate pregraph

(Et-1, Nt-1) in the sequence

(0,0) _ (E0,N0) < (E19N1) < ... < (Et-1,Nt-1) < (Et.Nt)

described by the Constructor using *S is either Et-1 Pn having end-

vertices x, y and xy a Nt_1 or.Et-1 - Cn-1 U P1. In either case, it is

clear that while Et-1 has no vertex of valency at least 3, Et-1 U {et),

where et is the last probe, does have such a vertex.

The strategy used in proving the next example (Yap [84]) seems to

be slightly more complicated.

Example 2 The property of graphs of order n > 2 which are connected and

have a vertex of valency 1 is elusive.
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Proof. The Constructor answers "edge" to Algy's first probe el = xy.

For any pregraph (E,N), the centre of E, denoted by C(E), is the set

C(E) = {x,y} U {z
I

dE(z) > 2}.

Let S be the set of all pregraphs (E,N) such that (i) xy a E, (ii)

for every u,v a C(E) such that u # v, uv e E U N and (iii) E has only

one nontrivial component, i.e. vertices not connected to the centre are

isolated vertices.

Let 4, be the strategy such that for any pregraph X = (E,N) and any

probe x e Tn - E U N, we put 4,(X,x) _ (E U {x},N) if and only if E U {x}

can be extended to a member of S. We shall show that 4, is a winning

strategy.

Let el, e2, ..., et be any sequence of probes by Algy and let

({el},+) = (EI,NI) < (E2,N2) < ... < (Et,Nt) be the corresponding

sequence of pregraphs given by the Constructor using 4,. We will show

that Et_l has the stated property while Et U {et} does not, so that Algy

cannot dispense with his last probe.

First we observe that any z ¢ C(Et_l) is joined to C(Et-1) by an

edge. Since at least one of the two places xz, yz is different from et,

there is a least index i < t such that ei is a probe between z and the

centre C(Ei_l). However, since dEi-1 (z) = 0, the strategy 4, gives "ei

is an edge". Hence ei joins z to a vertex in C(Et-1).

Observe that using 0, the final probe et cannot be between two

vertices of C(Et_l), and since IC(Ej)I > 2 for any j > 1, there is one

vertex w not in C(Et_1). Hence the last probe et must be between w and

a vertex of C(Et_1). Finally, by using 4,, it is clear that Et_l is

connected and by the above proof, w is not joined to C(Et-1) by an edge.

Hence the last probe et is critical. //

Exercise 5.2

1. Prove that connectedness is an elusive graph property.

2. Prove that for n > 3 the property of being a 2-connected graph of

order n is elusive.

37 Prove that the following properties of G n, n > 4, are elusive :
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(i) vertex-transitivity,

(ii) edge-transitivity.

4. Let E = G n be the set of connected graphs having an Eulerian trail.

Prove that E is elusive (Yap [84]).

5t Let 2 4 r t n. Prove that the property of containing a complete

subgraph of order r is elusive (Bollobas [76]).

(Note that Bollobas' proof also shows that the property X(G) ) r is

elusive for 2 4 r < n.)

6. Let n be a prime. Prove that the property being Hamiltonian graphs

of order n is elusive (Best, van Emde Boas and Lenstra [74]).

7. Prove that the property of graphs of order n) 3 having a vertex of

valency at least 2 is elusive (Milner and Welsh [74]).

3. Some non-elusive properties

Comparatively it is easier to find elusive graph properties than to

find non-elusive graph properties. Up to now only a few non-elusive

graph properties have been found. Among the existing non-elusive graph

properties, the property of being a scorpion graph (see Fig.5.2 and the

definition given below) of order n whose complexity is at most 6n is the

most interesting one. This result was proved by Best, van Emde Boas and

Lenstra [74] (see also Bollobas [78;p410]).

a scorpion graph

Figure 5.2

(A scorpion graph of order n ) 6 is a graph G having a body vertex b of

valency n - 2 and a tail vertex t of valency 1 which is adjacent to a

vertex m of valency 2, and all the other n - 3 vertices A of G may or

may not be adjacent as shown in Figure 5.2.)
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Theorem 3.1 If F is the property of being a scorpion graph of order n,

then c(F) < 6n.

Proof. We shall find a winning algorithm for Algy. Since c(F) < (2),

we may assume that n > 14. Algy's aim is to locate the body vertex b

and the tail vertex t of the scorpion graph. Define the weight of a

body candidate (resp. tail candidate) x as two minus the number of

probed places incident with x which have been answered "non-edges"

(resp. "edges"). Thus each candidate has weight 2 or 1.

Let V = V(G) _ {1,2,...,n}. First Algy probes the places 12, 23,

..., (n - 1)n, n1. By these probes, V is partitioned into three parts

B2, the set of body candidates of weight 2 (these cannot be tail

candidates); T2, the set of tail candidates of weight 2 (these cannot be

body candidates); and R = V - B2 - T2.

Algy now probes at most r = IRI places each of which is incident

with at least one vertex in R. In so doing, R is partitioned into two

parts : B1, the set of body candidates of weight 1; and T1, the set of

tail candidates of weight 1. It is clear that B1 fl T1 = f.

At this stage of the game, after at most n + r probes, the set of

body candidates B = B1 U B2 is disjoint from the set of tail candidates

T = T1 U T2, and the sum of the weights is at most 2n - r. Algy next

probes the places between the body candidates and the tail candidates.

Since each probe reduces the total weight by exactly one, this part of

the game needs at most 2n - r -2 probes. Denote by B' (resp. T') the

set of the remaining body candidates (resp. tail candidates), and let

b = IB'I, t - IT'I. If b, t < 1, we are at home.

Figure 5.3 Figure 5.4
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Suppose b > 2 and t > 3. Let B' _ {xl, x2, ... } and T' _ {y1, y2,

...}. If xlyl is a non-edge, then xly2, x1y3 must be edges and thus

x2y2, x2y3 are non-edges, which contradicts the fact that x2 is a body

candidate (see Fig.5.3). If xlyl is an edge, then x2yl is a non-edge

and we have the previous situation.

Similarly, we can dispose of the case that t > 2 and b > 3. Hence

we need only to consider the following three remaining cases :

Case 1. B' = {x1}, T' _ {Yl,Y2}

Since yl and Y2 are tail candidates and xl is a body candidate,

xlyl and x1y2 must be non-edges, which yields a contradiction.

Case 2. B' _ {xl,x2}, T' = {yl}.

In this case we may assume that xlyl and x2yl are non-edges,

otherwise the pregraph cannot be extended to a scorpion graph. Now Algy

probes the remaining unprobed places incident with yl so that he can

locate the vertex m which is adjacent to both the body vertex and the

tail vertex. This number is at most n - 3. After that Algy probes all

the unprobed places incident with the candidate m so that he can really

locate this vertex. This number is at most n - 2. At this stage, the

unique body candidate has been found and Algy needs only to probe at

most another n - 3 places to decide whether the pregraph can be extended

to a scorpion graph or not. Hence the total number of probes required

by Algy is at most (n + r) + (2n - r - 2) + 2(n - 3) + (n - 2) < 6n.

Case 3. B' = {xl,x2}, T' = {yl,y2}.

In this case we may suppose that xlyl, x2y2 are non-edges, xlx2 is

an edge, and yly2 is a non-edge. Otherwise the pregraph cannot be

extended to a scorpion graph. Algy now probes a place xlz for some

z e V - (B' U T'). If xlz is an edge, then Y2 cannot be the tail vertex

and x2 cannot be the body vertex of a scorpion graph (see Fig.5.4). If

xlz is a non-edge, then xl cannot be the body vertex and yl cannot be

the tail vertex of a scorpion graph. This again shows that after at

most (n + r) + On - r - 2) + 3 = 3n + 1 probes we can find the unique

body candidate and the unique tail candidate.
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Finally, it is clear that Algy needs at most another 3(n - 1) - 3

probes to decide whether the pregraph can be extended to a scorpion

graph or not. //

The above theorem shows that the computational complexity of being

scorpion graphs of order n > 6 is bounded by a linear function, and that

for n > 14, this property is non-elusive. In fact, for all n > 6, this

property is non-elusive (see Ex.5.3(7)).

Exercise 5.3

1. Let n = 2k, k > 3. Let F = G n be the set of all graphs G such that

G has two adjacent vertices x and y, and if X - N(x) - y, Y = N(y) -

x, then x I1 Y = , IXI = IY) = k - 1 and G has no edge joining a

vertex in X with a vertex in Y. Give an algorithm proving that

2

c(F) <
3a

+ 4 - 1.

E.g. For k = 3,

Figure 5.5

(This result is due to D. J. Kleitman. See Best, Van Emde Boas and

Lenstra [74].)

2. Prove that the following property of G 7 is not elusive (Milner and

Welsh [74]).

F =

Figure 5.6
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3. Define a property F3 of G n, n > 7, as follows: Replace the edge be

in each of the three graphs in Fig.5.4 by a path of length n - 6 and

let F3 - G n consist of all graphs isomorphic to one of these three

graphs. Prove that F3 is not elusive (Bollobas [78]).

4. Let F3 be the following property of G n, n > 7. A graph G e F3 if

and only if G has three vertices a, b, c such that N(b) ( N(c) _

and N(b) U N(c) = V(G) - {a}. Prove that F3 is not elusive (Milner

and Welsh [74]).

5. Let F be the following property of G n, n > 9. A graph G c F has a

vertex of valency n - 4 and each of the vertices adjacent to this

vertex has valency 1. Prove that F is not elusive.

E.g. For n = 9, F =O J U'O O O 0
Co C_ -C

0 c

Figure 5.7

CV0

(This result is due to L. Carter. See Best, van Emde Boas and

Lenstra [74].)

6. Let F be the property of G 6 given in Fig.5.5 and let

Fc = {X I X c F} where X is the complement of X. Prove that F U Fc

is also not elusive (Yap [84]).

7. Prove that the property of being a scorpion graph of order n > 6 is

non-elusive (Yap [84]).

4. The diagram of a non-elusive property

We recall that if F is a graph property, then the capacity of F is

the number of non-isomorphic graphs in F. It is obvious that every

property having capacity 1 is elusive. For n > 7, Milner and Welsh [74]

constructed a non-elusive property of G n having capacity 3 (see

Ex.5.3(2)) and they conjectured that every graph property of capacity 2

is elusive. This conjecture was proved by Bollobas and Eldridge [78].
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In this section, we shall introduce the notion of the diagram of a

property and we shall modify their proof to find some necessary

conditions for non-elusive properties having small capacity.

Let F be a property. The diagram of F is a diagraph whose vertices

are the elements of F and whose arcs are the ordered pairs (X,Y) where

X, Y C F and Y = X U {e} for some e e T - X. We denote the diagram of F

by D(F). Note that the diagram of a graph property is triangle-free.

Theorem 4.1 The diagram of a non-elusive graph property does not

contain an isolated vertex.

Proof. Suppose X e F is an isolated vertex in D(F). For any place x

probed by Algy, the Constructor fixes an isomorphic copy G = X and

answers "x is an element of the preset" if and only if x c G. It is

clear that the Constructor wins this game, which contradicts the

hypothesis.

Theorem 4.2 (Yap [841) Suppose F is a non-elusive property of G n and

Y C F. If either one of the following holds

(i) there is a unique edge e e Y such that Y - e e F;

(ii) there are a unique X E F and distinct edges e, e' ¢ X such that

X U (e) a Y =_ X U {e'},

then there is Z e F such that (Y, Z) is an arc in D(F).

The dual statement is also true.

Proof. We prove this theorem by contradiction.

Suppose (i) holds and F has no element Z such that (Y,Z) is an arc

in D(F). Consider the following strategy *1 by the Constructor. To the

first probe el by Algy, the Constructor answers "el is an edge". He

then fixes an isomorphic copy Yi of Y in which el plays the role of e.

For any subsequent probe x by Algy, the Constructor answers "x is an

edge" if and only if x e Y1. Now let e1,...,et (t = (2)) be the

sequence of probes by Algy and let ({e1},+) _ (EI,N1) < (E2,N2) < ... <

(Et,Nt) be the corresponding sequence of pregraphs described by the

Constructor using the strategy ji. Then either Et-1 = Yi or Et-i U {et}
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= Y1. However, if Et_1 = Yl, then et is critical because there is no

f ¢ Y1 a Y such that Y1 U {f} a F. On the other hand, if Et-1 U {et}

Y1, then et is also critical otherwise Y1 - et a F, contradicting the

uniqueness of e.

Suppose (ii) holds and F has no element Z such that (Y,Z) is an arc

in D(F). Consider the following strategy *2 by the Constructor in which

for any pregraph (E,N) and any probe x ¢ E U N he answers "x is an edge"

if and only if E U {x} can be extended to an isomorphic copy of Y.

Again, let e1,...,et be the sequence of probes by Algy and let (E1,N1) <

... < (Et,Nt) be the corresponding pregraphs described by the

Constructor using the strategy *2. Then again either Et_l U {et} = Y e

F or F.t_l a Y e F. However, if Et _l a Y, then et is critical, which

contradicts the hypothesis. On the other hand, if Et-1 U {et} a Y, then

Et_l e F otherwise F is elusive. Now Et_l e F implies that Et-1 a X by

the uniqueness of X. If et is a unique edge such that X U {et} y,

then by (i) there is Z e F such that (Y,Z) is an arc in D(F), which is a

contradiction. Hence we can assume that et plays the role of e', say.

But then the constructor must have already chosen e an edge and Et-l

should in fact be isomorphic to Y, which yields another contradiction.

The dual statement follows from the fact that F e G n is elusive if

and only if G n - F is elusive.

A star sink in a digraph D = (V,A) is a vertex x such that (y,x)

A for any y(# x) e V and if z e V is such that (x,z) a A, then z is of

in-degree 0 and out-degree 1. A star source is similarly defined. The

following theorem is due to E. C. Milner (see Yap [84]).

Theorem 4.3 If the diagram of a graph property F has a star source or a

star sink, then F is elusive.

Proof. Suppose X is a star sink in D(F) and that the statement is

false. (The proof for a star source is similar.) By Theorems 4.1 and

4.2, for each Yi(# X) a F, there is a unique fi ¢ X such that X U {fi}

Yi and that there is fi e X so that (X - fi) U {fi} a X. We now

consider the following strategy *3 by the Constructor. For any pregraph

(E,N) and any probe x ¢ E U N, he answers "x is an edge" if and only if
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there is no extension (E',N') of (E,N U {x}) with E' X. Let el,...,et

be the sequence of probes by Algy and let (EI,Nl) < ... < (Et,Nt) be the

corresponding sequence of pregraphs described by the Constructor using

*3. Since F is assumed non-elusive, it is clear that Et_l = X. Now

since et is not critical we must have Et = X U {et} a F. Thus et = fi

for some i. But when Algy probed the place f the Constructor would

have answered "fi is a non-edge" and this contradicts the fact that

fi a X. //

From Theorems 4.1 and 4.3, we have

Corollary 4.4 (Bollobas and Edridge [78]) If F is a graph property of

capacity at most 2, then F is elusive.

Corollary 4.5 If F = {X1,X2,X31 is a non-elusive graph property of

capacity 3, where IX1I < IX2I < IX3I, then

D(F) = G -E-- 0 -f __O
X1 X2 X3

From the proofs of Theorems 4.1, 4.2 and 4.3, we also have

Theorem 4.6 Let F be a graph property. If D(F) has a component which

is either an isolated vertex, has a star source, or has a star sink,

then F is elusive.

Exercise 5.4

1. Prove that if F = {X1,X2,X3,X4} is a non-elusive graph property of

capacity 4, where IX1I < IX2I < IX3I < IX4I, then D(F) is one of the

following digraphs

O-fO- _O_+_O 0_7 pal'

(a) (b) (c) (d)
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Figure 5.8

(g) (h)

2': There exist non-elusive graph properties of capacity 4 whose diagram

is a dipath of length 4. S. K. Teo (unpublished) has constructed a

non-elusive graph property whose diagram is given in Fig. 5.8 (f).

Does there exist a non-elusive graph property of capacity 4 whose

diagram is one of the other digraphs given in Fig.5.8 ?

3* Let F1,...,Fk e G n be non-elusive properties. Suppose Fi fl Fj = ¢

for any i # j. Is it true that c(F) = min {c(F1) I i - 1,...,k}

where F = F1 U ... U Fk ?

5. The odd-even balanced condition

A necessary condition for a property F to be elusive was

independently found by Rivest and Vuillemin [76] and Best, van Emde Boas

and Lenstra [74]. We now give a proof of this result.

Theorem 5.1 (Best, van Emde Boas and Lenstra [74]; Rivest and Vuillemin

[76]) Let F be a property of T, ITI = t. If c(F) = k, then (1 + z)t-k

divides the enumerating polynomial PF(z) of F.

Proof. We need only to prove this theorem for k < t. Let 4 be a

winning algorithm. The decision-tree T of m is a binary tree whose

vertices are labelled with xi a T. It is rooted at x1 where x1 is the

first probe by Algy. Suppose the hypothetical set is H. If the

Constructor gives x1 0 H, then the algorithm continues with the left

subtree rooted at x2 where x2 is the second probe by Algy, and we draw a

dotted edge joining xl with x2; otherwise the algorithm continues with

the right subtree rooted at x2 where x2 is the second probe by Algy, and

we draw a solid edge joining x1 with x2. The decision-tree grows at the

new root x2 or x2, and continues growing in this way. A diagram of a

decision-tree is shown below.
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a decision-tree

Figure 5.9

Since c(F,$,4) < k, the leaf (i.e. the determining preset), which

is eventually reached, specifies whether the preset S belongs to F or

not. If it belongs to F, a value 1 is given to it, otherwise a value 0

is given to it. The depth of the leaf is the number of probes asked.

Suppose a leaf is at depth j (j t k). Suppose the sequence of

presets given by 4' is X1 < X2 < ... < Xj < ... < Xt, Xi - (Ei, Ni).

Suppose Xj is determining and its value is 1. Then Xj < S = (E,N)

implies that E e F. Moreover, there is no Et with £ < j such that

IEjI < IEjI and Et e F. Thus the contribution of a leaf, at depth j, to

PF(z) is z(1 + z)t-j where i = IEjI. Finally, each X e F is contained

in exactly one branch of the decision-tree with a leaf receiving the

value 1, therefore (1 + z)t-k I PF(z).

Corollary 5.2 (The odd-even balanced condition) If the number of odd-

sized elements in F and the number of even-sized elements in F are not

equal, then F is elusive.

Proof. If F is elusive and c(F) - k < t, the. (1 + z)t-k I PF(z), and

therefore PF(-1) = 0, a contradiction to the assumption.

Suppose r is a group of permutations of T and X e T. Then the

orbit of X under the action of r is the set

Orbr(X) _ {a(X) I a e r}.

Thus if X1, ..., Xr are the distinct members of Orbr(X), then
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r - (Orbr(x)I = Irl/Ir(x)I (1)

In particular, if X is a graph of order n, r is the full permutation

group on the vertex set {0,1,...,n-1}, then r(x) = Aut X is the

automorphism group of X. Thus

IOrb(X)l - n!/jAut XI (2)

is the number of isomorphic copies of X.

The following example is an application of Corollary 5.2.

Example. Let

be a property of G 4. Then the number of odd-sized elements in F is 10

and the number of even-sized elements is F is 12. Hence F is elusive.

The following are further applications of Corollary 5.2. These

results are due to Rivest and Vuillemin [76]. The proofs of Theorems

5.4 and 5.5 are taken from Bollobas [78].

Theorem 5.3 Let t = ITI = pr, where p is a prime. If r(F) is

transitive on T, $ E F and T E F, then F is elusive.

Proof. Let X C F. Since r = r(F) is transitive on T, each element of T

is contained in exactly c of the sets in Orbr(X). Hence

IOr br(X)IIXI = prc (3)

Thus either IXI = pr or 0, or else p divides IOrbr(X)I which is the

number of distinct elements in F isomorphic with X. However since

T t F, lXI # pr. Hence the number of distinct elements in F isomorphic

with X # is always a multiple of p. This shows that the odd-even

condition for F is not balanced. Thus F is elusive. //
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Theorem 5.4 If F is a nontrivial monotone property of graphs of order

n - 2m, then c(F) > n2/4.

Proof. Let Hi = 2m-iK2i be the disjoint union of
2m-i

copies of K21.

Then

HO =+c H1 = n2 K2c...cHm=Kn.
Since F is monotone, there is an index j such that H = Hj c F and

Hj+1 t F. Put J = 2m j-1K2j. Then H = 2J and Hj+1 e K = J + J, the

join of two copies of J. Hence K d F.

Being generous to Algy, the Constructor gives away that the

hypothetical graph G satisfies H e G e K. However, when answering

question about places in T = E(K) - E(H), the Constructor will try to

play as well as possible.

A property P of T is defined as follows:

P = {E(G) - E(H) I H c C c K and G c F}.

Then 4 e P, T t P and c(P) < c(F). In fact for given G satisfying

H G e K, Algy needs at most c(P) probes to decide whether G e F or

G F.

It is clear that T and P satisfy the conditions of Theorem 5.3.

(If e, f e E(K) - E(H), then there is a permutation of V(G) mapping H

and K into themselves, that maps e to f. Therefore r(p) is transitive

on T.) Now ITI - n2/4 = 22m-2 is a prime power and thus c(F) > c(P) >

n2/4. //

Theorem 5.5 If F is a nontrivial monotone property of Gn, then

c(F) > n2/16.

Proof. Let c(n) = min {c(F) : F e G n is nontrivial monotone}. The

assertion is an immediate consequence of Theorem 5.4 if we prove the

following inequality : if 2m < n < 2m+1, then

c(n) > min {c(n-1), 22m-2} (4)

To prove (4), consider a monotone property F e G n. If 01 U Kn-1 t F or

Sn e F then, as in the proof of Theorem 5.4, if the Constructor gives
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away that a certain vertex has degree 0 or n - 1, Algy still needs at

least c(n-1) probes. Hence we may assume that 01 U Kn-1 C F and Sn ¢ F.

Let r = 2m-1 and s = n - 2r. Then the monotonicity of F implies

that Or U (Kr + Ks) C F, since it is a subgraph of 01 U Kn_1

Similarly, Kr + (Or U Ks) ¢ F since it contains Sn. As in the proof

of Theorem 5.4, F can be used to define a transitive property P on the

set T of edges joining Kr with Or and c(P) 4 c(F). The property P

satisfies the conditions of Theorem 5.4, so c(P) > r2, completing the

proof of (4).

Kleitman and Kwiatowski [80] improved the bound given in Theorem

5.5 to n2/9. Since their proof is complicated and there is still a big

gap between this bound and the conjectured value c(F) _ (2) (see 36), we

shall refer the interested readers to their original paper.

Exercise 5.5

1. Applying the odd-even balanced-condition, prove that every property

F= G n, n c 4, is elusive (Milner and Welsh [74]; Yap [84]).

2* Prove that every property of F e G5 is elusive.

3. Applying the odd-even balanced condition, prove that for n > 3,

F = {On, 0n-2 U S2, ..., O1 U Sn-1, Sn)

is an elusive graph property (Best, van Emde Boas and Lenstra [74]).

4. Let F = {G e G n
I

G contains two non-incident edges), n > 4.

Applying the odd-even balanced condition, prove that F is elusive.

5. Let F be the property of being a scorpion graph of order 6. Show

that c(F) > (2) - 2.

6. Show that if the capacity of F E- G n is 3 and that if F is non-

elusive, then c(F) = (2) - 1 (Yap [84]).

7. Let t = ITI. Prove that as t + -, almost all the properties of T

are elusive (Rivest and Vuillemin [76]).
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6. The Aanderaa-Rosenberg Conjecture

Aanderaa and Rosenberg (73] conjectured that there exists a

positive number c such that for every nontrivial monotone property F of

graphs (which may have loops) of order n, c(F) > cn2. Counter-examples

to this conjecture were produced by Lipton and Snyder [74]. These

counter-examples all involve with loops and thus the conjecture was

modified by Lipton and Synder accordingly. This modified conjecture was

subsequently proved by Rivest and Vuillemin [74] (see Theorem 5.5). In

order to revive the conjecture, Rivest and Vuillemin changed the

conjecture to the following form :

A-R ODNJECTURE Every nontrivial monotone graph property is elusive.

In this section, we shall prove that the A-R Conjecture is true for

most of the cases. This result is given by Corollary 6.4. The A-R

Conjecture has also been proved for all nontrivial monotone properties

F- G n where n is a prime power in a very recent paper by Kahn, Saks and

Startevant [84]. Their topological approach is nice but difficult to

fit in here. We refer the interested readers to their original paper.

Lemma 6.1 Suppose p is a prime divisor of ITI. If the group r of

permutations on T acts transitively on T, then p l
l r l

and for any X T ,

pfpXI or pflr(X)I implies that pllOrbr(X)I (5)

Proof. Since Orbr({x}) = T for any x e T, it follows from (1) that

pIIrI. Now for any X E_ T, we have, by the proof of Theorem 5.3,

pllOrbr(X)IIXI. Hence if pflXJ, then pllOrbr(X)l. Also, if pf r(X)l,

then pllrl and lrl = lOrbr(X)I imply that pll0rbr(X)l.

Corollary 6.2 Suppose p is a prime divisor of (Z). If X C G n and if

ON or pflAut XI, then pln!/IAut Xl.

Proof. This follows from Lemma 6.1 and the equality given by (2).

The following results are due to Yap [84].
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Theorem 6.3 Let F be a property of T such that + s F and T t F.

Suppose p is a prime divisor of ITI. If r - F(F) acts transitively on T

and if pflXl or pflr(X)l for each X c F - {+}, then F is elusive.

Proof. By Lemma 6.1, if X # ¢, then pllOrbr(X)I. Since iOrbr($)I = 1

is not a multiple of p, the odd-even condition is not balanced. Hence F

is elusive.

Corollary 6.4 Let p be a prime divisor of (2). If F is a nontrivial

monotone property of Gn such that for each X(# On) a F, either pflXl or

pflAut Xl, then F is elusive.

The above corollary shows that the A-R Conjecture is true for most

of the cases. For instance, let F G6 consist of all subgraphs of the

following two graphs. Then either 511XI or 54IAut Xl, therefore F is

elusive.

0

Figure 5.10

Let F be a nontrivial monotone property of G n and let p (> n) be

the smallest prime such that p > max {IXI
I

X e F). For each X e F, we

define X' = X U Op-n and F' = {X' I X e F). Then F' is a nontrivial

monotone property of G p and for each X'(# Op) a F', p4IX'1. Thus, by

Corollary 6.4, F' is elusive. Now to detect the first isolated vertex

in a hypothetical graph H, Algy needs to make at least p - 1 probes and

to detect the second isolated vertex in H, Algy needs to make at least

another p - 2 probes and so on. Hence if we can prove that

c(F) > c(F') - [(p - 1) + ... + n] (6)
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then (2) > c(F) > (2) - [(p - 1) + ... + n] _ (Z), from which the A-R

Conjecture follows. But (6) is not true in general, for instance, if F

_ G4 and p = 7, then F is trivial but F' is elusive (see Ex.5.6(2)).

However, it is not known whether or not (6) is true for all nontrivial

monotone properties of G n.

Exercise 5.6

1. Suppose F is a property of GP where p is a prime. Prove that if

X e F is such that IAut XI - 2p, then IOrb(X)I = (p-1)/2 mod p.

2. Show that every nontrivial monotone property F of G p, where p 4 13

is a prime, is elusive (Kleitman and Kwiatkowski [80]; Yap [84]).

3:` Does there exist a nontrivial property F = G n such that F # {On} is

elusive whereas F - {On} is non-elusive ?

4. Applying Corollary 6.4, show that if F = G6 is a nontrivial

monotone property which is not elusive then either 01 U K5 a F,

O1 + C5 a F, or S6 a F.

5t Prove that every nontrivial monotone property F - G6 is elusive.

6. Applying Corollary 6.4, show that if F c G8 is a nontrivial, non-

elusive monotone property, then either 01 U K7 e F or S8 e F (but

not both).

7. A Counter-example to the Rivest-Vuillemin Conjecture

Rivest and Vuillemin [75] generalized the Aanderra-Rosenberg

Conjecture as follows.

R -V Conjecture Let F be a property of T. If the group r(F) acts

transitively on T, 4 e F and T t F, then F is elusive.

A counter-example to this conjecture was produced by Illies [78].

We now reproduce this counter-example here.

Let T = (1,2,...,11,12) and let r be cyclic group of order 12

generated by (1,2,...,11,12). Let F - {$, [1], [1,4], [1,5], [1,4,7],
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[1,5,91, (1,4,7,101) where, say, [1,41 = {{g(1), g(4)} I g e r). It is

clear that F is invariant under r and that r (= r(F)) is transitive on

T, $ e F and T d F. Thus all the conditions given in the R-V Conjecture

are satisfied. However, we shall show that F is not elusive.

We first introduce a shorthand notation as follows : a bracketed

leaf (jl,...,js) stands for

Figure 5.11

where (i1,...,ir} _ {i e (1,2,...,12}
I
i # j1,...,js and i is not a

label on the path from the root to the leaf (jl,...,js)}.

To show that the property F given above is not elusive, we may

assume, without loss of generality, that the first probe by Algy is 1.

Suppose H is the hypothetical set. If 1 e H, then 2, 3, 6, 8, 11 and 12

are critical elements and thus should be probed first. It is clear that

2, 3, 6, 8, 11, 12 k H otherwise Algy wins the game straightaway.

Suppose Algy's next probe is 4. If 4 c H, then 5 ¢ H, and

similarly 9 ¢ H. Finally, whether the remaining two elements 7 and 10

belong to H or not is immaterial. On the other hand, if 4 ¢ H, then

Algy's next probe is 10. If 10 a H, then 5, 9 t H, and the remaining

element 7 is immaterial; if 10 0 H, then 7 d H and the remaining

elements 5 and 9 are immaterial.

The above argument is shown in the right hand branch of the
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decision-tree below. The sets (1,4), {1,4,7}, {1,4,10) and {1,4,7,10}

are the sets in F containing in the branch with the leaf (7,10). It can

be verified that the depth of this decision-tree is 11. For convenience

of reading, the readers may turn it 45° clockwise.

1 4 (7,10) {1,4}, {1,4,7), {1,4,10}, {1,4,7,10)

1 0 (7) {1,10), {1,10,7}

(5,9) {1}, {1,5}, {1,9}, {1,5,9}

2 11 - (5,8) {2,11}, {2,11,5}, {2,11,8}, {2,11,5,8}

{ 5 (8) {2,5), {2,5,8}

(6,10) {2}, {2,6}, {2,10}, {2,6,10}

3 12 (6,9) {3,12), {3,12,6}, {3,12,9}, {3,12,6,9)

6 (9) {3,6}, {3,6,9}

(7,11) {3}, {3,7}, {3,11}, {3,7,11}

4 7 (10) {4,7}, {4,7,10}

(8,12) {4}, {4,8}, {4,12}, {4,8,12}

11 8 (5) {11,8}, {11,8,5)

(7) {11}, {11,7)

12 9 (6) {12,9}, {12,9,6}

(8) {12}, {12,8}

7 (10) {7), {7,10)

10 (6) {10}, {10,6}

6 (9) (6), {6,9}

9 (5) {9}, {9,5}

0 m, {5), {8}, {5,8}

Figure 5.12

Remarks. The set F given in the above counter-example to the R-V

Conjecture is not monotone. To revive the R-V conjecture, we may impose
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an additional condition on F, namely, we require that F be monotone.

This new conjecture is called the Generalized Aanderaa-Rosenberg

Conjecture.

Generalized Aanderaa-Rosenberg Conjecture Let F be a nontrivial

monotone property of T. If the group r(F) acts transitively on T, and F

is monotone, then F is elusive.

Exercise 5.7

1* Does there exist a nontrivial monotone property which is

non-elusive?

8. A lower bound for the computational complexity of graphs properties

To conclude this chapter, we shall apply some theorems on packing

of graphs from Chapter 4 to obtain a lower bound for the computational

complexity of general graph properties.

Theorem 8.1 (Bollobas and Eldridge [78]) If P e G n is nontrivial,

then c(P) > 2n - 4.

Proof. Since P is nontrivial, by looking at the diagram of P and by the

fact that c(P) = c(G n - P), we can assume that P has a minimal element

G # On. If e(G) > 2n - 4, then it is clear that c(P) > 2n - 4. So we

may assume that e(G) < 2n - 4.

Case 1. A(G) = n - 1.

If G # Sn9 then the Constructor picks a vertex v and answers "edge"

to any probe vw and "non-edge" to the other n - 3 probes ab where

a, b # v. Let H be the pregraph obtained at this stage and let a =

dH(v). Since e(G - v) < (2n - 4) - (n - 1) = n - 3 and e(H - v) =

n - 3, by Corollary 4.3 (ii) of Chapter 4, there is a packing of G - v

and H - v and so H can be extended to G in such a way that dG(v) _

n - 1. Hence the Constructor can now fix a copy of G with dG(v) _

n - 1 and answers "edge" to any further probe cd if and only if cd c
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E(G). In this way Algy requires to make a total of at least (a + n - 3)

+ (e(G) - a) > 2n - 4 probes. Hence if c(P) < 2n - 4, then G = Sn.

It is easy to show that P = {G C G n A(G) = n - 11 is elusive.

Thus we may assume that there is a graph J P with A(J) = n - 1.

Choose such a graph J so that e(J) is minimum. By the previous

argument, if c(P) < 2n - 4, then e(J) < 2n - 4. Also since c(P) _

c(G n - P), by the above argument, we have J = Sn, a contradiction to

the assumption that J t P and Sn E P. Hence c(P) > 2n - 4.

Case 2. A(G) < n - 1 and e(G) > n - 2.

In this case the Constructor answers "non-edge" to the first in =

2n - 4 - e(G) < n - 2 probes. By Corollary 4.3 (ii) of Chapter 4, G can

be packed into Gm = (V, Em U Nm). Let G' be a fixed copy of G in G
m

To any further probe ab, the Constructor now answers "edge" if and only

if ab t E(G'). Hence c(P) > m + e(G) = 2n - 4.

Case 3. A(G) < n - 1 and e(G) < n - 2.

If G has an isolated vertex, we can proceed as in Case 2. (We have

a packing of G into Gm by mapping an isolated vertex of G to a vertex of

valency n - 1 in Gm if A(Gm) = n - 1.) So we may assume that G has no

isolated vertex and hence e(G) > Z . Let T be a tree-component of G.

Then ITI < n/3 (because e(G) < n - 3). Let v be an end-vertex of T and

let u be the neighbour of v. Then d(u) < 3 - 1. If Algy never probes

all the places incident with one particular vertex during the first m =

2n - 4 - e(G) probes, we can proceed as in Case 2. However, if Algy

does probe all the places incident with one particular vertex, w say,

then to the last probe wz, the Constructor gives an "edge" (to all the

other k < m - 1 probes, the Constructor gives a "non-edge"). We note

that the valency of u in G - v is at most 3 - 2 <

2

{(n - 1) - 21 and

the valency of z in Gm - w (where Gm - (V, Em U Nm)) is at most

m - (n - 1) =n- 3 - e(G) 4L- - 3<11(n-

2

1) - 2}. Moreover,

e(G - v) + e(Gm - w) < (e(G) - 1) + (2n - 4 - e(G) - (n - 1)) n - 4

< 2 {(n - 1) - 2). By Ex.4.4 (1), there is a packing a of G - v into Gm

- w such that a(u) = z and thus a is an embedding of G into Gm + wz.

This forces Algy to make a total of at least 2n - 4 probes and so c(P) >

2n - 4.
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Remarks. The above lower bound probably is not best possible. However,

the technique applied in the proof indicates that to obtain a better

lower bound for the computational complexity of general graph properties

will not be easy.

Let D - (V,A) be a digraph such that there is at most one arc

joining two distinct vertices of D. The computational complexity of a

digraph property is slightly different from that of a graph property.

For a digraph property, to any probe ab by Algy, the Constructor has

three choices : either (a,b) e A or (b,a) s A or none of (a,b) and (b,a)

belongs to A.

Bollobas and Eldridge [78] also studied the lower bound for some

computational complexity of digraph properties. We include some of

their results as exercises here.

Exercise 5.9

1. Prove that P - (G a Gn I A(G) = n - 1) is elusive.

2. Suppose P is the property that consists of all digraphs of order n

having a sink. Prove that c(P) = 2n - [log2 n] - 2 (Bollobas and

Eldridge [78]; see also Bollobas [78;p.430]).

3. Suppose P is a nontrivial monotone property of digraphs of order

n > 8. Prove that c(P) > 2n - [log2 n] - 2 (Bollobas and Eldridge

[78]).
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